Visual Prompting via Image Inpainting

< □ ▶ < @ ▶ < E ▶ < E ▶ E ∽ Q ♀ 1/18

Few-shot Prompting (In-context Learning)

Train a model to develop wide range of abilities, and use those abilities to work on desired downstream task.

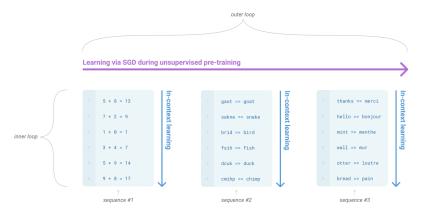


Figure 1: In-context learning

Few-shot Prompting (In-context learning)

Pretrained model receives a natural language instruction and/or a few demonstrations of the desired downstream task, and is expected to complete other instances of the task by simply predicting what comes next.

- Zero-shot : model only receives a natural language instruction.
- One-shot : model receives a natural language instruction, and a single demonstration.
- ▶ Few-shot : model receives a natural language instruction and a few (typically ≤ 10) demonstrations.

<□ > < @ > < ≧ > < ≧ > ≧ り < ≥ の < 3/18

Fine-tuning

```
Fine-tuning
sea otter => loutre de mer \leftarrow example 1
          gradient update
peppermint => menthe poivree \leftarrow example 2
          gradient update
                 . . .
plush girafe => girafe peluche \leftarrow example N
          gradient update
cheese =>
                                       \leftarrow prompt
```

Few-shot Prompting (In-context learning)

Zero-shot

 $\begin{array}{rcl} \mbox{Translate English to French:} & \leftarrow \mbox{ instruction} \\ \mbox{cheese =>} & & \leftarrow \mbox{ prompt} \end{array}$

One-shot

Translate Englisth to French: \leftarrow instructionsea otter => loutre de mer \leftarrow examplecheese => \leftarrow prompt

Few-shot

Translate Englisth to French: sea otter => loutre de mer peppermint => menthe poivree plush girafe => girafe peluche cheese =>

- $\leftarrow \mathsf{instruction}$
- $\leftarrow \mathsf{example}\ 1$
- $\leftarrow \mathsf{example}\ 2$
- $\leftarrow \text{ example } 3$
- $\leftarrow \mathsf{prompt}$

Can the in-context learning be generalized to vision tasks?

Large capacity image inpainting models

Appropriate (large) training data

 \implies Visual prompting

Inpainting

The goal of an inpainting model f is to generate an image $y \in \mathbb{R}^{H \times W \times 3}$ from given input image $x \in \mathbb{R}^{H \times W \times 3}$ and binary mask $m \in \{0, 1\}^{H \times W}$:

$$y = f(x, m). \tag{1}$$

◆□ → < □ → < Ξ → < Ξ → Ξ · の Q · 8/18</p>

For the architecture of f, the authors propose the MAE-VQGAN model, which combines Masked AutoEncoder (MAE) and Vector Quantized GAN (VQGAN).

Masked AutoEncoder

- 1. Divide image into patches
- 2. Randomly mask certain portion of patches
- 3. Encode only the visible patches
- 4. Decode with encoded patches and masked tokens (which represent masked patches) to reconstruct the original image

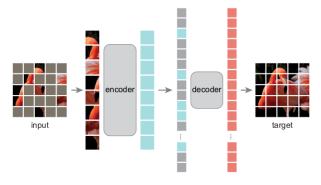


Figure 2: Masked autoencoder

Vector Quantized GAN

Similar to VQVAE, VQGAN utilizes (learnable) quantized codebook to encode latent of image:

$$x \to \hat{z} = E(x) \to z_q = q(E(x)) \to \hat{x} = G(q(E(x))).$$

However, to enrich the codebook, VQGAN jointly train the discriminator as in GAN.

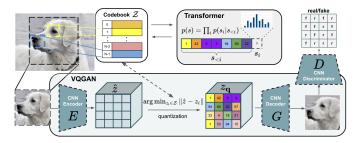


Figure 3: Vector quantized GAN

MAE-VQGAN

Given a pretrained VQGAN $E_{VQ}, G_{VQ}, \mathcal{Z}$, and a MAE E_{θ}, D_{ϕ} , MAE-VQGAN models the distribution $p_{\theta,\phi}(z_i|x,m)$, where z_i is the visual code of *i*th patch of x.

Training:

$$\mathcal{L}_{\theta,\phi}(x,m) = CE(q(E_{\mathsf{VQ}}(x), D_{\phi}(E_{\theta}(x*m)))*m$$
(2)

Inference:

$$y = G_{\mathsf{VQ}}(q(D_{\phi}(E_{\theta}(x*m)))) \quad (3)$$

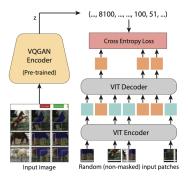


Figure 4: MAE-VQGAN

Prompting

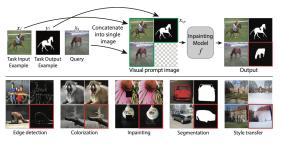


Figure 5: Visual prompting using image inpainting

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ○ ○ ○ 12/18

Computer Vision Figures (CVF) Dataset

- Consist of 88645 images images collected from Arxiv selected from Computer-Vision partition
- Labelled 2000 images and trained a binary classifier to remove unrelated images (e.g. charts, graphs)

Figure 6: Computer vision figures

Table 1: **Visual prompting results on computer vision tasks.** For Foreground Segmentation and Single Object Detection, we report the *mIOU* score. For Colorization, we report the *MSE*.

Model	Foreground Segmentation ↑				Single Object Detection ↑				Colorization \downarrow	
	Split 0	Split 1	Split 2	Split 3	Split 1	Split 2	Split 3	Split 4	MSE	LPIPS
Сору	12.92	17.90	13.52	15.29	12.14	13.50	13.03	12.38	2.63	0.75
BEiT (IN-21k)	0.38	0.93	0.90	0.95	0.24	0.32	0.19	0.10	1.25	0.73
VQGAN (IN-1k)	6.96	10.55	9.59	9.43	5.19	4.99	5.09	5.10	2.44	0.66
MAE (IN-1k)	1.92	6.76	3.85	4.57	1.37	1.98	1.62	1.62	1.13	0.87
MAE-VQGAN (IN-1k)	2.22	7.07	5.48	6.28	3.34	3.21	2.80	2.80	3.31	0.75
BEiT (Figures)	5.38	3.94	3.20	3.29	0.17	0.02	0.14	0.16	0.60	0.70
VQGAN (Figures)	12.56	17.51	14.27	15.06	2.27	2.37	2.48	1.99	1.50	0.56
MAE (Figures)	17.42	25.70	18.64	16.53	5.49	4.98	5.24	5.84	0.43	0.55
MAE-VQGAN (Figures)	27.83	30.44	26.15	24.25	24.19	25.20	25.36	25.23	0.67	0.40

Figure 7: Examples of visual prompting (downstream tasks)

(ロ)、

15/18

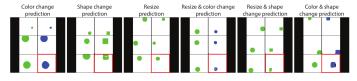


Figure 8: Examples of visual prompting (reasoning)

< □ > < @ > < \ > < \ > > \ = ・ ⑦ < ♡ < 0 → 16/18

Figure 9: Failed examples

Thank You

Q & A

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ ♪ < ■ り < 0 < 0 18/18