
1/19

Tree of Thoughts: Deliberate Problem Solving
with Large Language Models

2/19

Overview
1. Input-Output (IO) Prompting: y ∼ pIOθ (y|x)
2. Chain-of-Thought(CoT) Prompting: introduce a chain of

thought z1, · · · , zn where each thought zi is sequentially
sampled zi ∼ pCoTθ (y|x, z1···i−1) to serve as a meaningful
intermediate step to reach y ∼ pCoTθ (y|x, z1···n).

3. Self-consistency with CoT (CoT-SC): k i.i.d. samples

[z
(i)
1···n, y

(i)] ∼ pCoTθ (z1···n, y|x), and return most frequent
output argmaxy #{i|y(i) = y}.

Figure 1: Illustration of various approaches in problem solving

3/19

Tree of Thoughts (ToT)

ToT frames a problem as a search over tree, where each node of a
tree is a state s = [x, z1···i] or partial solution to the problem.

4/19

Tree of Thoughts (ToT)

1. Thought decomposition
Unlike CoT, which sequentially sample thoughts without explicit
decomposition, ToT design problem-specific decomposition.

Figure 2: Task overview

5/19

Tree of Thoughts (ToT)

2. Thought generator G(pθ, s, k)

▶ Sample: k i.i.d. samples z(j) ∼ pCoTθ (zi+1|s)
▶ Good when search space is rich
▶ ex. Creative writing

▶ Propose: generate thougths sequentially using ”propose
prompt”
▶ Good when search space is constrained
▶ ex. Crosswords, Game of 24

6/19

Tree of Thoughts (ToT)

3. State evaluator V (pθ, S)
Use LLM pθ (mulitple times) to reason about the state s

▶ Value: V (pθ, S)(s) ∼ pvalueθ (v|s)
▶ score : scalar value or classification (ex. sure/likely/impossible)
▶ few lookahead simulation and commonsense

▶ Vote: V (pθ, S)(s) = 1[s = s⋆], where ”good” state
s⋆ = pvoteθ (s⋆|S)
▶ Use when direct evaluation is hard
▶ similar to multi-step self-consistency strategy

7/19

Tree of Thoughts (ToT)

4. Search algorithm

1. Breadth-first search

2. Depth-first search

8/19

Tree Search Algorithms

Breadth-First Search (BFS)
def BFS(G: graph, V0: root, Vt: target):

Q = Queue()

Q.append(V0)

V0.visited = True

while len(Q) != 0:

V = Q.dequeue()

V.visitied = True

if V == Vt:

return

else:

for v in V.children():

if not v.visited:

Q.enqueue(v)

9/19

Tree Search Algorithms

Depth-First Search (DFS)
def DFS(G: graph, V: root, Vt: target):

V.visited = True

if V == Vt:

return

else:

for v in V.children():

if not v.visited:

DFS(G, v, Vt)

10/19

Tree of Thoughts (ToT)

Algorithm 1 ToT-BFS

1: Given:
Input x, LLM pθ, thought generator G, size limit k, state
evaluator V , step limit T , breadth limit b

2: S0 ← {x}
3: for t = 0, 1, · · · , T do
4: S′

t ← {[s, z]|s ∈ St−1, zt ∈ G(pθ, s, k)} ▷ k ∗ b candidates
5: Vt ← V (pθ, S

′
t)

6: St ← argmaxS⊂S′
t,|S|=b

∑
s∈S Vt(s) ▷ b candidates

7: end for
8: return G(pθ, argmaxs∈ST

VT (s), 1)

11/19

Tree of Thoughts (ToT)

Algorithm 2 ToT-DFS

1: Given:
Current state s, step t, LLM pθ, thought generator G, size
limit k, state evaluator V , step limit T , threshold vth

2: if t > T then record G(pθ, s, 1)
3: end if
4: for s′ ∈ G(pθ, s, k) do
5: if Vθ, {s′})(s) > vth then DFS(s’, t+1) ▷ check plausibility
6: end if
7: end for

12/19

Tree of Thoughts (ToT)

Benefits

▶ Generality: previous methods are special case of ToT

▶ Modularity: each modularized compartment (thought decomp,
thought gen, state eval, search alg) can be modified individually

▶ Adaptability: different problem settings, LMs, resource
constraint can be used

▶ Convenience: no extra training

13/19

Experiments

Game of 24: use given 4 numbers to obtain 24 with basic
arithmetic operations (ex. (10− 4) ∗ (13− 9) = 24)

Figure 3: Game of 24

▶ Thought decomposition: 3 steps

▶ Thought generator: ”propose” prompt

▶ State evaluator: LLM evaluate each thought as
sure/maybe/impossible

▶ Search algorithm: BFS

14/19

Experiments

Game of 24

Figure 4: Game of 24 results

15/19

Experiments

Creative writing: write 4 short paragraphs where each ends with
one of the given 4 sentences.

Figure 5: Creative writing

▶ Thought decomposition: 2 steps

▶ Thought generator: sample k plans

▶ State evaluator: LLM voting

▶ Search algorithm: BFS

16/19

Experiments

Creative writing

Figure 6: Creative writing results

Evaluation

▶ GPT-4: make GPT-4 to give 5 independent 1∼10 scalar scores,
and report average

▶ Human: empoly authors to judge between two outputs

Refine: iteratively ask LLM to refine the passage if it is not perfectly
coherent.

17/19

Experiments

Mini crosswords: 5×5 mini crosswords

Figure 7: Mini crosswords

▶ Thought decomposition: at most 10 steps

▶ Thought generator: ”propose” prompt to come up with
candidates and its confidence level

▶ State evaluator: LLM evaluate whether each proposal or not

▶ Search algorithm: DFS

18/19

Experiments

Mini crosswords

Figure 8: Mini crosswords results

19/19

Thank You

Q & A

