Optimizing DDPM Sampling with Shortcut
Fine-Tuning

Denoising Diffusion Probabilistic Models

Forward process:

q($t+1|=’ﬂt $t+1, vV 1- 5t+1$t,5t+11

Backward process:

Q(Te|Tes1, 0) = N (243 fig1(Te41,20), Besal),

with
_ Vau ar1(l —au)
(241, T0) = Lt To + AT o Tey1,
1= 1 -y
~ t+1
where iyl = 1-— ﬁt+1, Q1 = s=1 Xs
DDPM:
Pl (xe|wsr) = N(ze; Hf+1($t+1), Yit1)
T-1
Pg:T = p(z7) H P?($t|$t+1)a
t=0

Score Matching Loss:
T—1

J =Eq | Y Drrla(@deei, wo), pf (s|zer1)
t=0

Issues with DDPM Samplers

Case 1. Training DDPM with small T

> From Kwon et al. [2022], given a score matching loss J,
Wa (ph,q0) <O (\/7) + I(TYWa(pr, qr),

where W5 is the Wasserstein-2 distance, I(T) is nonexploding,
and Wy (pr,qr) — 0 as T — oo.
» In diffusion process, if T" is small, then pr % g7, and
Wa(pr, qr) is not neglectable.
Case 2. Sampling with 77 << T subsampling steps

» According to Salimans and Ho [2022] and Xiao et al. [2022], a
multistep Gaussian sampler cannot be distilled into a one-step
Gaussian sampler without loss of fidelity.

> Existing methods can be viewed as imitation learning, which is
suboptimal in many cases.

Main Question

Can we improve DDPM sampling by not following the backward
process?

Integral Probability Metrics (IPM)

Define a critic f, : R® — R for each a € A, where A is a set of
parameters. For a given critic f, and distributions pg and ¢, define

90, far@0) = E [fa(zo)l = E [falzo)]-

{L‘prg Zo~q0
Suppose that
Va€ A3 € Ast. fo = —fu, (1)

then
P (pg,qo) = sup g(ph, fa: 90)
acA

is a pseudo-metrics between distributions, called integral probability
metrics (IPM).

New Objective

Given a set of critic parameters A, that satisfies (1), and a DDPM
sampler with T step, and parameter 6, we want to solve

min @ (pg, qo) ,
or

: 0
a 2
melnglejcg(pmfmq()) (2)

New Objective

Let hg defines the stochastic sampling process of DDPM as follows:

hor(rr) = o7 (3)
hot(zt) = po(ho1(Tev1)) + €p1 (4)
xo = hgo(xT), (5)

with zp ~ N(0,1), 6441 ~ N(0,%441),t =0,--- , T — 1. Then the
objective can be expressed as follows:

o () =swp{ B aluoter)] = E Uulanl} (6)

acA T €1:T xo~q0

Shortcut Fine-Tuning (SFT)

Given pg,q(), suppose that

Vo, da € A s.t. g(pg, fasq0) = @(pg, q)-

Let

O‘*(pgv%) € {a € A|g(pg7fa’q0) = q)(pgaqo)}

Then if f, is 1-Lipschitz, then we have

Veq)(Pga QO) =Vy E |:fa*(p87q0) (hg,g(.']?T))]

TT,€1:T

= B |Volurgpa (hooler)]

TT,€1:T

Proof.
Theorem 3 from Arjovsky et al. [2017].

Potential Issues with SFT

Since hg o(x7) is a composition of T functions, differentiating it
have following potential issues:

» Gradient vanishing may cause the loss of long-distance
dependency

> Gradient exploding
» High memory usage

Shortcut Fine-Tuning with Policy Gradient (SFT-PG)

Theorem 1 (Policy gradient equivalence)
If Pl (€0:) for (.00 (0) and Voro.r (207) for (pg o) (¥0) are
continuous w.r.t 6 and xq.7, then
T—1
Vo®(p§, q0) = E Jor (840 (£0) Vo Z log p (z¢|wee1) | - (11)

Pzg.p t=0

Shortcut Fine-Tuning with Policy Gradient (SFT-PG)

Proof.

Let V(e 6) =]EI()NPG [fa(zo)] — Exg~qg [fa (z0)], then by the envelope theorem, we have
0

]
Vo®(p§, q0) = veV(a,e)LW*(pg o)
—

:V9|: E [fa(zo)l - E
wg~pf xg~q

[fa(z0)]
0

O<:D<*(pg,qo):|

:Ve{ E [fa(zo0)]

zo~pg

a:a*(pg,qo):|

= Ve/pg(m)fa(fvo)dzO’a,a*(pe)
- g,

= VB//Pg:T(ZO:T)dzlsza(zo)d10|a

:a*(pg,qo)

0
=V /pO:T(IO:T)fa(zO)dzO:T’aia*(pg)
- 8,

Shortcut Fine-Tuning with Policy Gradient (SFT-PG)

Proof (continued).

_ 0
= /VGPD:T(WO:T)fa(JO)dwO:T’a:a*(pqu[ﬂ (12)
— 0 4
= /Po;T(J')O:T)VSlogpo;T(xO:T)fa(wO)de:T‘a:a*(pquo) (13)
T-1
= E |fu0 . (@)Velog|pr(zr) [] Pl (elei1) (14)
9 a*(pg,a0) t
Po.T t=0

T—-1
= E {fa*(pg,qo)mo)vetzlogpfww)},

0
Po:T =0

where (12) holds by continuity of pzD:T (IO:T)fa*(pg,qO) (zp) and VQPZO:T (ZO:T)fa*(pg ,20) (z0), (13)

holds by the log derivative trick, and (14) holds by the definition of pg:T' O

Connection with Reinforcement Learning

Equation (11) can be viewed as a policy gradient of MDP with
finite time horizon T’, and

> a; =T
> m(ag|st) = pf (w4]z41)

> R(St at) = fa*(pquo)(l'o) =0
’ 0 otherwise

Pros and Cons

Pro
» No gradient vanishing or exploding
» Not necessary to store intermediate gradients of a composite
function
Con

» Stochastic policy gradient methods usually suffer from higher
variance

» Can use techniques in RL, such as baseline trick

Monotonic Improvement

Note that a*(p), o) depends on . Hence the gradient update
might only be valid for one step.

Theorem 2 (The surrogate function of IPM)

Suppose that for given a € A, and qo, 9(pf, fa, qo). Then for a

given critic fa*(pg g0)+ there exists £ > 0 such that

B 40) < 900 s far g0y @) + 2|0 =0 (15)

Monotonic Improvement
Proof.

We drop 0 from pf and gg for convenience.
2")~ 20’ 0)
= [@) = a@)s, . o @iz = [@) = a@)f o o g (@)
= [0” @ = a@)f L ot @z = [0 @) = a@) S e 04 (@)
+ [0 @) = 6@y o gy @z = [0 (@) = a@) S e 0 (@)
= [0 @ = @) (£ 07)@ = Fa 0.0 @) a5+ [67 @) =7 @) 0, (@)

Note

J@@) = 8" @) (Far 0,0 @) = o 0 @) o
= [67@ =5 @) (£ 0,0y @ = £ oty (@) 15
[0 @ = 4@ (£ 0,0y @) = £ o1y (@) 5

0 o’
< [07@ = 5" @) (Far (.00 = T o (@) (16)

where inequality (16) holds by the definition of a*(pe, q)

Monotonic Improvement

Proof (continued).

Hence

2" q) — 2’ q)

< [67@ =" @) (Far 0,0y @ = L oy @) i+ [67 @) = 27 @) s 0, ()

= {g (pe,fa*(pe,q)»q) -9 (Pgl, fa*(peyq)yq)] + [g (pe/»fa*(pglﬁq)»q) -9 (pgyfa*(pg/,q),q)}
+g (;Del,fa*(po’qy 4) -9 (p{’, Fox0,q) q)

<g (pel,fa*@eyq).q) -9 (Pev fa*(pe,q),q) +2¢ H9' - 9” 17

’
= (pe ,fa*@e,q),q) —a@p?, q) +2¢|0’ —GH,

’
where inequality (17) holds by the Lipschitzness of g w.r.t 6 for given a*(pe, q) and o* (pG ,q), respectively [J

Monotonic Improvement

Theorem 2 implies that if #’ is sufficiently close to #, then gradient

descent of g (pgl, for@9,q)> q), guarantees the descent of ®(p?, q).

Hence using Lagrangian multiplier, we can convert the optimization
problem into a constrained optimization problem

Hgng (pﬁ” fa*(pG,q)7Q> (18)
st. || 0] <o (19)

for some § > 0.

Baseline Trick

Theorem 3 (Baseline trick)

If p?(:nt|xt+1) and Vgpf(a:t]mtﬂ) are continuous, then

-1
[fa 0) > Vologp| xt\$t+1)]
=0

7-1
= E [(fa(afo) Vi (ze41) ZVOIngt fct\mtﬂ)] (20)
=0

Baseline Trick

Proof.

It is suffice to show that
6
E [Vtﬁ_l(zml)ve log py (Tt|zt+1)] =0.
Po:T
Note that

0
E |Vii1(z41) Ve logpy (welziq1)
PO:T[t+1(t+) 0 t + }

(4
= B | B [Vii(eer1)Velogp] (atleeit)lwerir]
pf . =0:49
+1:T

0
= ,E |:]E9 [Vtil(wwrl)velogpt (Tt|zt+1)‘zt+1:T}:| .
P47 LPt

Proof (continued).

But then since pf (z¢|xi4q) and Vgpf(zt |2¢41) are continuous,

0
) [Vﬁu(xwﬂ)ve log p{ ($t|$t+1)|9¢t+1:T]
Pt

0 0
= ti1(lt,+1)/:ﬂt (zt]|Ts 1)V log py (wt|@yyq)day
0
=Viti(eg1) /Vept (zt|Tty1)dot (21)
w 0
=Vi41(ze41) Ve /Pt (zt|wgqr)dat

=0, (22)

where equality (21) holds by the log derivative trick, and (22) holds by [p?(zt|zt+1)dzt =1. O

Baseline Trick
With some mild assumptions, we have

T—1 2
Var = E {(37 (falzo) — Vt,+1(It+1))ve;ﬂf(zt\zt+1)) }
t=0

Po.T

T-1 2
- (E {Z (fa(@0) = Vey1(ze41)) Von] (xt‘zt+1>:|)

6
Po.7 Lt=0

oVar o] E
OVip1r Vi pe .

T-1 2
< S (falzo) — Vt+1(zt+1))V9Pf(ztIzt+1)> }
t=0

0 2
8Vt+1 o (fcx(0) = Vit1(zt41))Veopy (] t+1))]

2
—2fa(z0)Vit1(zt41) (VQP?(ZHZHA)) }
th+1 po

o

2
E [(Vt+1(zt+1))2 (Vepf(rt\ItJrl)) }
et o

=—2 E [fa(zo)(vepf(zt\zt+1))]+2 E {Vt+1(zt+1)(Vepf(mt‘zt+l))2i|<
pOT POT

Baseline Trick

Hence

oVar
Vi1

(zp41) =—2 E [fa(zo) (Vepf(zt\zt+1))2 \Zt+1]
Po.T

0 2
+2Vip1(we41) E [(Vept (wt|$t+1)) |~'Et+l}
Po.T

and to set (23) to 0, we must have

lEpg:T [fa(z(J) (Vspf(l‘t\zt+1))2 |It+1]

Vig1(zi41) =

2
5,0 [(Vorfrlecn) o]
Po.T (t +) +

However, in practice, one usually use

Vig1(@gpr, o) = E [fa(zo)|@t4a]
Po.T

as a proxy.

(23)

(24)

(25)

(26)

Baseline Trick

H w
To train Vi, we use

Rp(e,w,0) = E |3 (Vi (@) — Vier(we,@))?| (27)

Regularizing Critic
Choice of A is important. Here are some examples of A and
regularization techniques for the critic corresponding to such set of

parameters.
Lipschitz regularization: A = {o] | f.||;, < 1}, then For 09.a0)
satisfies
V20 oty (0) | = 1 (28)

almost everywhere.
Proof.
Corollary 1 of Gulrajani et al. [2017]. O
Hence to enforce Lipschitzness of f,,, we can use

Rap(a,0) = E |([[Vay fal(@0)|| — 1)? (29)

zo

as a regularizer, where g is uniformly sampled from the line
/ 0 %
segment between x; ~ py and z; ~ qo.

Regularizing Critic

Reusing baseline: Empirically reusing Rp as a regularizer was
beneficial. Here is some intuition behind its benefit:

» V%1 can be viewed as a proxy of expected value of f, from
previous step

» Rp can be viewed as minimizing big change in expected valued
of f., hence stabilize the training

> Also makes V4, to fit better, because its loss is reused

Then to train the critic, the objective would be to maximize

L(a7w79) =g (p87f0uq0> -)\RB(OJ,W,9> (30)

Algorithm

Algorithm 1 Shortcut Fine-Tuning with Policy Gradient and Baseline
Regularization (SFT-PG (B)

Inputs:
TNeritic, Ngenerator, Datchsize m, critic parameters «, baseline function
parameters w, pretrained generator 6, regularization hyperparameter A

while 0 not converge do
Initialize buffer B as ()
fori =0, -, Neritic do
Obtain m i.i.d. samples from pch:T
Add all {$z+1,$t,$0,t} to B
Obtain m i.i.d. samples from qo
Update o and w to maximize (30)
end for
for .] = 07 +++, Ngenerator do
Obtain m samples of {x+41, z¢, xo,t} from B
Update 6 by policy gradient using (20)
end for
end while

Experiments

—— SFT(GP)
- SFT-PG (GP)
—— SFT-PG (B)

Walpo, 9o)(x10°%)

5 3

100 260
Epochs

(

s

) Training curves of swiss roll

() Roll, SFT-PG (GP)

(d) Roll, SFT-PG (B)

—— SFT(GP)
rrrrr SFT-PG (GP)
—— SFTPG (B)

Wa(ps, Go)(x10°%)

g E

00 260
Epochs

(e) Training curves of moons

Figure 1: Toy dataset experiments: swiss roll (top), two

(f) Moons, SFT (GP)

(g) Moons, SFT-PG (GP)

(h) Moons, SFT-PG (B)

moons (bottom)

Experiments

Method Wg(pg,qO) (><10_2)
T =10, DDPM 8.29
T =100, DDPM 2.36
T = 1000, DDPM 1.78
T — 10, SFT-PG (B) 0.64

Table 1: DDPM vs SFT on swiss roll dataset

Experiments

(a) CIFARI10, Initialization (b) CIFAR10, SFT-PG (B) (c) CelebA, Initialization (d) CelebA, SFT-PG (B)

Figure 2: Image dataset experiments: CIFAR-10 (a), (b) / CelebA (c), (d)

Experiments

Method CIFAR-10 (FID) CelebA (FID)
DDPM 34.76 36.69
FastDPM 29.43 28.98
Analytic-DPM 22.94 28.99
SN-DDPM 16.33 20.60
DDPM (T = 1000) 3.03 3.26
SFT-PG (B) 2.28 2.01

Table 2: FID on CIFAR-10 and CelebA for 7" = 10

Thank You

Q& A

M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein generative
adversarial networks. In Proceedings of the 34th International
Conference on Machine Learning. PMLR, 2017.

I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. C.
Courville. Improved training of wasserstein GANs. In Advances in
Neural Information Processing Systems, 2017.

D. Kwon, Y. Fan, and K. Lee. Score-based generative modeling
secretly minimizes the wasserstein distance. In Advances in
Neural Information Processing Systems, 2022.

T. Salimans and J. Ho. Progressive distillation for fast sampling of
diffusion models. In International Conference on Learning
Representations, 2022.

Z. Xiao, K. Kreis, and A. Vahdat. Tackling the generative learning
trilemma with denoising diffusion GANs. In International
Conference on Learning Representations, 2022.

	References

