
1/18

SELF-REFINE:
Iterative Refinement with Self-Feedback

2/18

Motivation

▶ In problem-solving, human performs an iterative refinement,
where one makes an initial draft and sequentially refine it via
self-feedback.

▶ To mimic this process with LLM, external supervision, or
reward models have been utilized.

▶ However, such approaches require large amount of training
data, or human feedback, which can be very expensive, or even
infeasible to get.

▶ Can we utilize the iterative refinement with self-feedback?

3/18

Overview

0 Generate an initial output withM
1 Send the output back toM to get a feedback

2 Get feedback fromM
3 Send feedback toM (3)

0 Generate a refined output withM
...

Figure 1: Overview of SELF-REFINE

4/18

Few-shot Prompting

Note in the overview, a single model handles initial generation,
feedback, and refinement. How?
=⇒ Few-shot prompting (also called as in-context learning)

5/18

Trend in NLP

Past Representation learning + task-specific architecture

⇓
Current Pretrained task-agnostic language model + direct fine-tuning

6/18

Limitation

1. Need a large dataset for every new tasks

2. Poor generalization (or spurious correlation in training data)

3. Counter-intuitive with how human mind operate

7/18

Few-shot Prompting (In-context Learning)

Train a model to develop wide range of abilities, and use those
abilities to work on desired downstream task.

Figure 2: In-context learning

8/18

Few-shot Prompting (In-context learning)

Pretrained model receives a natural language instruction and/or a
few demonstrations of the desired downstream task, and is expected
to complete other instances of the task by simply predicting what
comes next.

▶ Zero-shot : model only receives a natural language instruction.

▶ One-shot : model receives a natural language instruction, and a
single demonstration.

▶ Few-shot : model receives a natural language instruction and a
few (typically ≤ 10) demonstrations.

9/18

Fine-tuning

Fine-tuning
sea otter => loutre de mer ← example 1

↓
gradient update

↓
peppermint => menthe poivree ← example 2

↓
gradient update

↓
· · ·
↓

plush girafe => girafe peluche ← example N
↓

gradient update
↓

cheese => ← prompt

10/18

Few-shot Prompting (In-context learning)

Zero-shot
Translate Englisth to French: ← instruction
cheese => ← prompt

One-shot
Translate Englisth to French: ← instruction
sea otter => loutre de mer ← example
cheese => ← prompt

Few-shot
Translate Englisth to French: ← instruction
sea otter => loutre de mer ← example 1
peppermint => menthe poivree ← example 2
plush girafe => girafe peluche ← example 3
cheese => ← prompt

11/18

SELF-REFINE Framework

Feedback Receives an output, and provides feedback to improve it

Refine Refine an output based on the feedback and previously
generated outputs

Iterative Feedback → Refine → Feedback can be applied repeatedly

Figure 3: SELF-REFINE example

Note here the key characteristic of Feedback is actionable, i.e. it
(i) localizes the problem, (ii) gives instruction to improve.

12/18

More Overview Examples

Sentiment Reversal

If you ever wondered where the magic of Vegas crawled into a

hole to rot, look no further that the Trop. Write with positive

sentiment.

If you’re looking for budget friendly option in Vegas, Trop maybe

worth considering.

Feedback

Is the sentiment of this review Positive? If not, how can it be

improved?

The review is not positive because of ambivalent phrases like

’worth considering’.

Refine

If you’re looking for a unique and affordable experience in

Vegas, the Trop may be the perfect place for you.

13/18

More Overview Examples

Code Optimization Feedback Refine

Write code to generate

the sum of 1, 2, · · · , N

def sum(n):

res = 0

for i in

range(n+1):

res += 1

return res

This code

is slow as

it uses

brute force.

A better

approach

is to use

the formula

(n(n+1))/2.

def sum(n):

return (n*(n+1))//2

14/18

SELF-REFINE Algorithm

Algorithm 1 SELF-REFINE algorithm

1: Given:
input x, initial output y0, feedback module pfb, refine
module pim

2: for t = 0, 1, · · · , T do
3: fb, fbscore ∼ pfb(yt) ▷ Get feedback
4: if stop(fbscore) then
5: break ▷ Early stopping
6: else
7: yt+1 ∼ pim(yt+1 | y≤t, x, fb, fbscore) ▷ Get refinement
8: end if
9: end for

10: return argmaxt fbscore(yt) ▷ Best output selection

15/18

A/B Evaluation

For tasks with established metrics, evaluating the performance is
easy. However, for open-ended tasks, such as Sentiment Reversal,
Dialogue Response Generation, there is no reliable metrics. In this
case one can use an A/B evaluation.

A/B Evaluation. Given an input, task instruction, and two
generated outputs, a human judge blindly choose which output is
better aligned with the specified instruction.

16/18

Experiments
▶ Math Reasoning: Solve grade school mathematics

▶ Constrained Generation: Given a set of concepts (or words), create a
sentence that covers all the concept, and makes sense at the same time

▶ Code Optimization: Optimize a given program

▶ Code Readability: Modify a given program to improve readability

▶ Dialogue Response: Generate human-like response to a wide range of topics

▶ Sentiment Reversal: Reverse the sentiment associated with a passage

▶ Acronym Generation: Create an acronym

Metric Dataset Base LLM SELF-REFINE
Solve Rate Math Reasoning 71.3 76.2
Coverage Constrained Generation 4.0 22.5
% Programs Optimized Code Optimization 9.7 15.6
% Readable Variables Code Readability 37.4 51.3

Dialogue Response 27.2 37.6
Human Eval. Sentiment Reversal 15.3 84.7

Acronym Generation 11.8 23.5

Table 1: Main results

17/18

Ablation Study

1. Impact of iterative refinement

Dataset Starting point Iteration 1 Iteration 2
Sentiment Reversal 32.4 41.6 84.7
Math Reasoning 71.3 73.2 76.2
Code Optimization 9.7 15.3 15.6

2. Impact of actionable feedback

Task Actionable Generic
Sentiment Reversal 85% 73%
Code Optimization 15.6% 10.4%

18/18

Thank You

Q & A

