SELF-REFINE: Iterative Refinement with Self-Feedback

Motivation

- In problem-solving, human performs an *iterative refinement*, where one makes an initial draft and sequentially refine it via self-feedback.
- To mimic this process with LLM, external supervision, or reward models have been utilized.
- However, such approaches require large amount of training data, or *human feedback*, which can be very expensive, or even infeasible to get.

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ = の Q @ 2/18

Can we utilize the iterative refinement with self-feedback?

Overview

3

Generate an initial output with ${\cal M}$

Send the output back to ${\mathcal M}$ to get a feedback

- Get feedback from ${\mathcal M}$
- Send feedback to \mathcal{M} (3)

Generate a refined output with $\ensuremath{\mathcal{M}}$

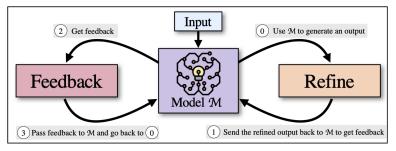


Figure 1: Overview of SELF-REFINE

Note in the overview, a *single* model handles initial generation, feedback, and refinement. How?

 \implies Few-shot prompting (also called as *in-context learning*)

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ↔ 4/18

Past Representation learning + task-specific architecture $\downarrow \downarrow$ Current Pretrained task-agnostic language model + direct fine-tuning

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 5/18

Limitation

- $1. \ \mbox{Need}$ a large dataset for every new tasks
- 2. Poor generalization (or spurious correlation in training data)

< □ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ▶ 三 ∽ Q ↔ 6/18

3. Counter-intuitive with how human mind operate

Few-shot Prompting (In-context Learning)

Train a model to develop wide range of abilities, and use those abilities to work on desired downstream task.

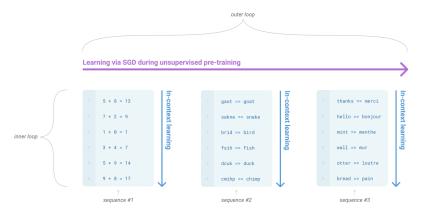


Figure 2: In-context learning

Few-shot Prompting (In-context learning)

Pretrained model receives a natural language instruction and/or a few demonstrations of the desired downstream task, and is expected to complete other instances of the task by simply predicting what comes next.

- Zero-shot : model only receives a natural language instruction.
- One-shot : model receives a natural language instruction, and a single demonstration.
- ▶ Few-shot : model receives a natural language instruction and a few (typically ≤ 10) demonstrations.

<□ > < @ > < E > < E > E のQ 8/18

Fine-tuning

```
Fine-tuning
sea otter => loutre de mer \leftarrow example 1
          gradient update
peppermint => menthe poivree \leftarrow example 2
          gradient update
                 . . .
plush girafe => girafe peluche \leftarrow example N
          gradient update
cheese =>
                                       \leftarrow prompt
```

Few-shot Prompting (In-context learning)

Zero-shot

 $\begin{array}{rcl} \mbox{Translate English to French:} & \leftarrow \mbox{instruction} \\ \mbox{cheese =>} & & \leftarrow \mbox{prompt} \end{array}$

One-shot

Translate Englisth to French: \leftarrow instructionsea otter => loutre de mer \leftarrow examplecheese => \leftarrow prompt

Few-shot

Translate Englisth to French: sea otter => loutre de mer peppermint => menthe poivree plush girafe => girafe peluche cheese =>

- \leftarrow instruction
- $\leftarrow \text{ example } 1$
- $\leftarrow \mathsf{example}\ 2$
- $\leftarrow \mathsf{example} \ 3$
- $\leftarrow \mathsf{prompt}$

SELF-REFINE Framework

Feedback Receives an output, and provides feedback to improve it Refine Refine an output based on the feedback and previously generated outputs

 ${\tt lterative} \ {\tt Feedback} \rightarrow {\tt Refine} \rightarrow {\tt Feedback} \ {\tt can} \ {\tt be} \ {\tt applied} \ {\tt repeatedly}$

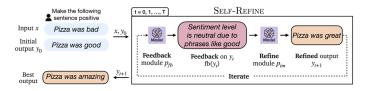


Figure 3: SELF-REFINE example

Note here the key characteristic of Feedback is actionable, i.e. it (i) localizes the problem, (ii) gives instruction to improve.

More Overview Examples

Sentiment Reversal

If you ever wondered where the magic of Vegas crawled into a hole to rot, look no further that the Trop. Write with positive sentiment.

If you're looking for budget friendly option in Vegas, Trop maybe worth considering.

Feedback

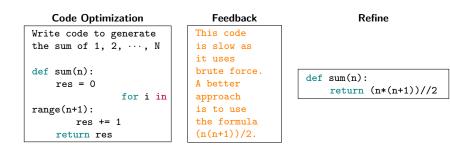
Is the sentiment of this review Positive? If not, how can it be improved?

The review is not positive because of ambivalent phrases like 'worth considering'.

Refine

If you're looking for a unique and affordable experience in Vegas, the Trop may be the perfect place for you.

More Overview Examples



< □ ▶ < @ ▶ < \ > ↓ < \ > ↓ \ = り < \ > 13/18

SELF-REFINE Algorithm

Algorithm 1 SELF-REFINE algorithm

1: Given: input x, initial output y_0 , feedback module p_{fb} , refine module p_{im} 2: for $t = 0, 1, \dots, T$ do $fb, fb_{score} \sim p_{fb}(y_t)$ 3: ▷ Get feedback if $stop(fb_{score})$ then 4: break \triangleright Early stopping 5: else 6: $y_{t+1} \sim p_{im}(y_{t+1} | y_{\leq t}, x, fb, fb_{score})$ ▷ Get refinement 7: κ end if 9: end for 10: return $\arg \max_t fb_{score}(y_t)$ ▷ Best output selection

For tasks with established metrics, evaluating the performance is easy. However, for open-ended tasks, such as Sentiment Reversal, Dialogue Response Generation, there is no reliable metrics. In this case one can use an A/B evaluation.

A/B Evaluation. Given an input, task instruction, and two generated outputs, a human judge blindly choose which output is better aligned with the specified instruction.

◆□▶ ◆□▶ ◆ 三▶ ◆ 三▶ 三 - のへで 15/18

Experiments

- Math Reasoning: Solve grade school mathematics
- Constrained Generation: Given a set of concepts (or words), create a sentence that covers all the concept, and makes sense at the same time
- Code Optimization: Optimize a given program
- Code Readability: Modify a given program to improve readability
- Dialogue Response: Generate human-like response to a wide range of topics
- Sentiment Reversal: Reverse the sentiment associated with a passage
- Acronym Generation: Create an acronym

Metric	Dataset	Base LLM	SELF-REFINE
Solve Rate	Math Reasoning	71.3	76.2
Coverage	Constrained Generation	4.0	22.5
% Programs Optimized	Code Optimization	9.7	15.6
% Readable Variables	Code Readability	37.4	51.3
Human Eval.	Dialogue Response	27.2	37.6
	Sentiment Reversal	15.3	84.7
	Acronym Generation	11.8	23.5

Table 1: Main results

Ablation Study

1. Impact of iterative refinement

Dataset	Starting point	Iteration 1	Iteration 2
Sentiment Reversal	32.4	41.6	84.7
Math Reasoning	71.3	73.2	76.2
Code Optimization	9.7	15.3	15.6

2. Impact of actionable feedback

Task	Actionable	Generic
Sentiment Reversal	85%	73%
Code Optimization	15.6%	10.4%

Thank You

Q & A

<□ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ ♪ < ■ り < 0 < 18/18