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Abstract

We propose LoRA modules as a replacement for the time and class embeddings
of the U-Net architecture for diffusion probabilistic models. Our experiments on
CIFAR-10 show that a score network trained with LoRA achieves competitive FID
scores while being more efficient in memory compared to a score network trained
with time and class embeddings.

1 Introduction

Diffusion probabilistic models (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021)
perform image generation using a score network trained to approximate the time-dependent score
function. For class-conditional image generation, the score function is further conditioned on the
image class, and classifier-free guidance (Ho & Salimans, 2021) is often used. Within the score
network architecture, time information is incorporated by a sinusoidal time embedding inspired by
the positional encoding of transformer architectures (Vaswani et al., 2017), and class information is
incorporated by a trainable token embedding. These architectural choices are certainly very effective,
as evidenced by the quality of the state-of-the-art diffusion models, but they do feel arbitrary, and
their optimality has certainly not been adequately explored.

Meanwhile, Hu et al. (2022) recently proposed Low-Rank Adaptation (LoRA) as a parameter-
efficient fine-tuning mechanism for Large Language Models (LLM). Given a pre-trained set of dense
weight W , LoRA parameterizes the fine-tuning update ∆W with a low-rank factorization. LoRA
demonstrates strong performance even with low ranks, as small as r = 4 or even r = 1, and its usage
has even been extended to fine-tuning diffusion models (Ryu, 2023; Go et al., 2023; Shi et al., 2023;
Smith et al., 2023; Yang et al., 2023; Wang et al., 2023).

In this paper, we propose TimeLoRA and ClassLoRA, LoRA modules that replace the time and
class embeddings of the U-Net architecture for diffusion probabilistic models. Our experiments on
CIFAR-10 show that a score network trained with LoRA achieves competitive FID scores while being
more efficient in memory compared to a score network trained with time and class embeddings.

2 Background

2.1 Diffusion probabilistic models

Diffusion probabilistic models (DPM) (Sohl-Dickstein et al., 2015; Ho et al., 2020; Song et al., 2021)
generate images by reversing the forward diffusion process. The forward process iteratively destroys
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Figure 1: (Left) Conventional time and class embeddings (Right) TimeLoRA and ClassLoRA

an image by injecting noise, and DPMs learn to progressively reconstruct the image by removing the
injected noise. In this paper, we consider the specific instance DDPM, which we further review in
Appendix A.

Time embedding. DPMs generally use a variant of the U-Net architecture (Ronneberger et al.,
2015) with time information incorporated with sinusoidal embeddings, inspired by the positional
encodings of transformer architectures (Vaswani et al., 2017). Specifically, each level of the U-Net has
residual blocks with convolutional layers, and the sinusoidal time embedding goes through trainable
linear layers to produce values for scale and shift operations injected into the residual blocks. On the
other hand, the pixel-wise attention layers of the U-Net architecture used for DPMs do not have time
information injected directly into them. See Figure 1. Alternatives to the U-Net architecture, such as
DiT (Peebles & Xie, 2022) and RIN (Jabri et al., 2023), which use transformer and recurrent neural
network architectures, also depend on sinusoidal embeddings to incorporate time.

Class embedding. For class-conditional generation, the score networks of DPMs are conditioned
on class labels, and classifier-free guidance of Ho & Salimans (2021) is widely used. Typically class
information is injected into the residual blocks with convolutional layers alongside time embedding,
as depicted in Figure 1.

2.2 Low-Rank Adaptation (LoRA)

LoRA (Hu et al., 2022) is a parameter-efficient finetuning method originally designed for the
transformer architectures of LLMs. To fine-tune a pre-trained dense weight matrix W ∈ Rdout×din ,
LoRA parameterizes the fine-tuning update ∆W with a low-rank factorization

W +∆W = W +BA,

where B ∈ Rdout×r, A ∈ Rr×din , and r ≪ min{din, dout}.

LoRA and diffusion models. Recently the usage of LoRA has been extended to fine-tuning
diffusion models (Ryu, 2023; Go et al., 2023; Shi et al., 2023; Smith et al., 2023; Yang et al., 2023;
Wang et al., 2023). To the best of our knowledge, however, our work is the first attempt to use LoRA
as part of the base architecture for diffusion models.

LoRA and multi-task learning. In Audibert et al. (2023), LoRA is used in multi-task learning.
More specifically, they propose to use frozen task-agnostic weights shared across different tasks and
task-specific low-rank updates trained for each task. Since diffusion models also use a shared U-Net
with time-dependent embedding layers, they can also be interpreted as an instance of multi-task
learning with one task per timestep.

3 TimeLoRA

Consider DDPM with T (discrete) timesteps. We replace the time embedding of the score net-
work with TimeLoRA. Typically, time information is injected into the residual blocks containing
convolutional layers. We instead apply TimeLoRA to the dense weights in attention blocks. See
Figure 1.
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3.1 Non-compositional LoRA

We instantiate T independent LoRAs A1, A2, . . . , AT and B1, B2, . . . , BT and use the dense weight
Wt of the attention blocks parameterized as

Wt = W +∆W (t) = W +BtAt

for t = 1, . . . , T . However, this approach has two drawbacks. First, since T is typically large
(∼ 4000), the T LoRAs occupy significant memory. Second, since each LoRA (At, Bt) is trained
independently, it disregards the fact the LoRA of nearby time steps would likely be correlated/similar.

3.2 Compositional LoRAs

To address the drawbacks of the previous approach, we use a composition of m+ 1 basis LoRAs,
A0, A1, . . . , Am and B0, B1, . . . , Bm, where m ≪ T . Each basis LoRA (Ai, Bi) corresponds to
time ti for 1 ≤ t0 < · · · < tm ≤ T . As illustrated in Figure 1, we then use the dense weight Wt of
the attention blocks parameterized as

Wt = W +∆W (t) = W +

m∑
i=0

ωi(t)BiAi,

where ωi(t) is the time-dependent weight for the basis LoRA (Ai, Bi) for i = 0, . . . ,m. To
clarify, the trainable parameters for each linear layer is W,A0, A1, . . . , Am, B0, B1, . . . , Bm. In
particular, there is no pre-training, and W is concurrently trained with LoRAs. This approach was
loosely inspired by LoraHub (Huang et al., 2023). It now remains to specify our choice of ωi(t) for
i = 0, . . . ,m.

Linear interpolation. Since the score network is a continuous function of t, we expect ω(t) ≈ ω(t′)
if t ≈ t′. Therefore, we first encode t by linearly interpolating the two closet basis LoRAs: for
ti ≤ t < ti+1, we choose ωi(t) =

ti+1−t
ti+1−ti

, ωi+1(t) =
t−ti

ti+1−ti
, and ωj(t) = 0 for all j /∈ {i, i+ 1}.

Trainable composition weights. We also experiment with letting ωi(t) be general trainable weights.
We explore three different initialization schemes:

• Gaussian : ωi(t) ∼ N (µ, σ2) IID

• Onehot : ωi(t) = 1ti≤t<ti+1

• Linear : initialize ω to match linear interpolation

4 ClassLoRA

Consider DDPM with C classes. As with TimeLoRA, we replace the class embedding with Class-
LoRA. Typically, class information is injected into the residual blocks containing convolutional layers.
We instead apply ClassLoRA to the dense weights in attention blocks. See Figure 1.

Since C is small for CIFAR-10 and the correlations between different classes are not clear, we only
use the non-compositional ClassLoRA:

Wc = W +∆W (c) = W +B′
cA

′
c

for c = 1, . . . , C. When C is large, such as in the case of ImageNet1k, we may use compositional
ClassLoRA, but we leave the investigation of this to future work.

5 Experiments

As a proof-of-concept experiment, we implement TimeLoRA and ClassLoRA on IDDPM (Nichol &
Dhariwal, 2021) (and remove the time and class embeddings) and train the score network with the
CIFAR-10 dataset. For each setting, we train the model for 500k iterations with 128 batch size. We
sample 50k samples every 50k iterations and report the best FID score (Heusel et al., 2017).
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For simplicity, we assume that m divides T − 1 and that the basis LoRAs are uniformly spaced, i.e.,
ti = 1 + ik, where k = (T − 1)/m. As in Ryu (2023), we set the rank of LoRA r = 4. Also, unlike
the prior works that use LoRA as a finetuning method, we train the U-Net alongside TimeLoRA
and ClassLoRA from scratch. (There is no pre-training.) For detailed experiment settings, refer to
Appendix C.1.

5.1 Replacing time embedding with TimeLoRA

We first compare IDDPM with time embedding and with TimeLoRA (with no class conditioning).
As reported in Table 1, with only 88-90% of the parameter count, utilizing TimeLoRA yields a
competitive FID score. We provide randomly selected samples in Figure 4 in Appendix C.4.

Table 1: Sampling of unconditional CIFAR-10 images with and without TimeLoRA

T m r Type FID # Params

IDDPM 4000 time emb. (no LoRA) 3.69 52546438
IDDPM + T-LoRA 1000 1000 4 non-compositional 4.78 137417350
IDDPM + T-LoRA 4001 10 4 linear interpolation 3.79 46271110
IDDPM + T-LoRA 4001 10 4 train (Gaussian) 3.72 47591440
IDDPM + T-LoRA 4001 10 4 train (onehot) 3.61 47591440
IDDPM + T-LoRA 4001 10 4 train (linear) 3.64 47591440

5.2 Replacing time and class embedding with TimeLoRA and ClassLoRA

Next, we compare class-conditional IDDPM with time and class embedding and with TimeLoRA and
ClassLoRA. As reported in Table 2, TimeLoRA and ClassLoRA seem to be more compatible with
the classifier-free guidance, showing significant improvement over unconditional image generation
with only 90-92% of the parameter count compared to the conventional time and class embeddings.
We provide randomly selected samples in Figure 5 in Appendix C.5.

Table 2: Sampling of class conditional CIFAR-10 images with and without Time and ClassLoRA.
T (m,C) r Type FID # Params

IDDPM 4000 time & class emb. (no LoRA) 3.38 52551558
IDDPM + T&C-LoRA 4001 (10, 10) 4 linear interpolation 3.08 47192710
IDDPM + T&C-LoRA 4001 (10, 10) 4 train (Gaussian) 2.85 48513040
IDDPM + T&C-LoRA 4001 (10, 10) 4 train (onehot) 2.93 48513040
IDDPM + T&C-LoRA 4001 (10, 10) 4 train (linear) 2.91 48513040

5.3 Using Time and Class LoRAs alongside with time and class embeddings

Finally, we investigate combining Time and Class LoRAs with conventional time and class embed-
dings. This way, both the residual blocks containing convolutional layers and the attention blocks are
conditioned by time and class. We run 3 independent experiments for each setting, and report the
best FID score in Table 3.

T-LoRA and t-embedding. As reported in Table 3, unconditional IDDPM with both time embed-
ding and TimeLoRA yields improved FID score with only a 2∼4% addition of the parameter count
compared to using time embedding alone. Moreover, adding time embedding shows improvement
compared to using only TimeLoRA consistently over all composition schemes. So, time embedding
and TimeLoRA are compatible, and combining them yields better results than using them individually.
We provide randomly selected samples in Figure 4 in Appendix C.4.

T&C-LoRA and t&c-embedding. Combining Time and Class LoRAs to conditional IDDPM with
both time and class embeddings improves FID scores with only a 3.7∼6.2% addition of the parameter
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count. However, compared to using Time and Class LoRAs alone, combining LoRAs with trainable
weights and conventional embeddings shows lower FID score. Moreover, using LoRA with linear
interpolation shows better result than using LoRA with trainable composition weights. These results
might indicate that using Time and Class LoRAs with both time and class embeddings endows model
with enough capacity to overfit, or even memorize (Yoon et al., 2023), causing a decline in the FID
score.

Table 3: IDDPM sampling of CIFAR-10 images with LoRAs and conventional embeddings.
T (m,C) r Type FID # Params

T-LoRA + tembed 4001 (10, -) 4 linear interpolation 3.38 53560198
T-LoRA + tembed 4001 (10, -) 4 train (Gaussian) 3.54 54880528
T-LoRA + tembed 4001 (10, -) 4 train (onehot) 3.48 54880528
T-LoRA + tembed 4001 (10, -) 4 train (linear) 3.37 54880528

T&C-LoRA + t&c-embed 4001 (10, 10) 4 linear interpolation 3.01 54486918
T&C-LoRA + t&c-embed 4001 (10, 10) 4 train (Gaussian) 3.28 55807248
T&C-LoRA + t&c-embed 4001 (10, 10) 4 train (onehot) 3.11 55807248
T&C-LoRA + t&c-embed 4001 (10, 10) 4 train (linear) 3.12 55807248

6 Future Works

We propose TimeLoRA and ClassLoRA as a replacement for the conventional class and time
embeddings in the score network architecture of diffusion probabilistic models and experimentally
demonstrate their promise. There are many avenues of future work to investigate the full potential
of LoRA as a general mechanism to condition score networks. For instance, following Alfassy
et al. (2022), we may apply LoRA also to convolution layers to further improve the performance.
Following Choi et al. (2022), we may identify “important” time steps and use larger values of r for
them, as opposed to using uniformly sized LoRAs. Seeing whether TimeLoRA and ClassLoRA are
compatible with other state-of-the-art models such as EDM (Karras et al., 2022) and EDM-G++ (Kim
et al., 2022) would be interesting. Finally, using LoRA for text-to-image models such as Stable
Diffusion (Rombach et al., 2022), Imagen (Saharia et al., 2022), and DALL ·E (Ramesh et al., 2022)
would be a valuable research direction, but it would unfortunately be out of practical reach of most
academic research labs.
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A Denoising Diffusion Probabilistic Model (DDPM)

DDPM (Ho et al., 2020) generates an image by iteratively restoring the data from a noise. Such
restoration process is defined by the reverse process of the forward diffusion process: given a data
x0 ∼ q0, progressively inject noise to x0 by

q(xt|xt−1) = N
(√

1− βtxt−1, βtI
)

for t = 1, · · · , T and 0 < β < 1. Then assuming T is sufficiently large, one can explicitly compute
the reverse process as

q(xt−1|xt, x0) = N
(
µ̃t(xt, x0), β̃tI

)
where

µ̃t(xt, x0) =

√
α̃t−1βt−1

1− α̃t
x0 +

√
α̃t(1− α̃t−1)

1− α̃t
xt,

and αt = 1 − βt, α̃t =
∏t

s=1 αs. Hence DDPM pθ parameterzied by θ is trained to estimate the
reverse process by

pθ(xt−1|xt) = N (µθ(xt, t),Σθ(xt, t))

with the objective

L = E
q

[
T−1∑
t=1

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))− log pθ(x0|x1)

]
.

In practice, assuming Σθ is fixed, one can train ϵθ by reformulate the objective as

L = E
t,x0∼q0,ϵ∼N (0,I)

[
∥ϵ− ϵθ(xt, t)∥2

]
,

with xt =
√
α̃tx0 +

√
1− α̃tϵ.
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B Illustration of UNet

We provide an illustration of UNet used in IDDPM. Note as demonstrated in Figure 1, conventional
time and class embeddings are added to Res blocks, whereas TimeLoRA and ClassLoRA are attached
to attention blocks.
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Figure 2: Illustration of UNet architecture

C Experiment

C.1 Experiment settings

IDDPM training flags. Here we provide the training setting used for IDDPM experiments:

MODEL_FLAGS="--image_size 32 --num_channels 128 --num_res_blocks 3 --learn_sigma True --dropout 0.3"
DIFFUSION_FLAGS="--diffusion_steps 4000 --noise_schedule cosine"
TRAIN_FLAGS="--lr 1e-4 --batch_size 128"

Initialization. Here we provide the initialization details:

• Dense weights: W in the attention block is initialized as in IDDPM (Nichol & Dhariwal,
2021)

• LoRA: As in Hu et al. (2022), we initialize Ai, A
′
c ∼ N (0, 1/r), and Bi, B

′
c ∼ 0

• Gaussian init: We use the default init._normal provided by Pytorch; µ = 0, σ = 1

C.2 Results on varying r and m

We report some preliminary experiments on varying LoRA rank r and the number of basis LoRA
m in Table 4. Note in this experiment, we sample 50k samples every 100k iterations and report the
best FID score. Similar to the observation by Hu et al. (2022) increasing r does not translate into
improved performance. Surprisingly, similar observation was made even for m.
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Table 4: Unconditional IDDPM + TimeLoRA sampling with varying m and r (CIFAR-10)

m r FID # Params

train (onehot) 10 4 3.61 47591440
10 8 3.77 48605200

train (linear) 10 4 3.64 47591440
10 8 3.69 48605200

(a) Varying r

m r FID # Params

train (onehot)
10 4 3.61 47591440
20 4 3.64 48605200
40 4 3.76 53957140

train (linear)
10 4 3.64 47591440
20 4 4.03 48605200
40 4 3.76 53957140

(b) Varying m

C.3 Visualization of composition weights

We visualize the trained composition weights of LoRA from a randomly selected attention block in
Figure 3. Note we only report onehot initialization, and linear initialization, because visualization of
Gaussian initialization did not provide any meaningful implication. We average the absolute values
of ωi(t) for ts near each basis LoRA. For example, on the first row, we report 1

200

∑200
t=1 ωi(t), and

on the second row, we report 1
400

∑600
t=201 ωi(t), and so on.

From the visualization, we can see that time t is encoded by the composition of closet basis LoRAs.
This justifies our intuition from Section 3.2: DDPM should perform similar task for nearby timesteps
t and t′.
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(b) Trained with linear initialization

Figure 3: Visualization of trained composition weights
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C.4 Unconditional samples

(a) TimeLoRA (b) Time embedding and TimeLoRA

Figure 4: Unconditional CIFAR-10 image samples

C.5 Class-conditional samples with TimeLoRA and ClassLoRA

(a) Bird (b) Car

Figure 5: Class conditional CIFAR-10 image samples using TimeLoRA and ClassLoRA
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(c) Cat (d) Deer

(e) Dog (f) Frog

Figure 5: Class conditional CIFAR-10 image samples using TimeLoRA and ClassLoRA
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(g) Horse (h) Plane

(i) Ship (j) Truck

Figure 5: Class conditional CIFAR-10 image samples using TimeLoRA and ClassLoRA
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