LoRA: Low-Rank Adaptation of Large Language Models

<□ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊂ 1/16

Motivation

- Neural networks typically contains many dense layers with full-rank weight matrices
- Aghajanyan et al. [2021] shows that pre-trained language models have very low intrinsic dimension
- When finetune, why not make updates with low intrinsic dimension?

<□ > < @ > < E > < E > E のQ 2/16

Low-Rank Parameterized Update Matrices

Given a (pre-trained) weight matrix $W_0 \in \mathbb{R}^{d \times k}$, LoRA constrains the update of weight with a low rank decomposition

$$W_0 + \Delta W_0 = W_0 + BA, \qquad (1)$$

where $B \in \mathbb{R}^{d \times r}$, $A \in \mathbb{R}^{r \times k}$ with $r \ll d, k$. To only update A, and B, during finetuning, W_0 is frozen.

Figure 1: Low-Rank Adaptation (LoRA)

うしん 前 ふかくはや (日本)

Low-Rank Parameterized Upadate Matrices

- Gaussian random for A, and zero for B. Hence at initialization $\Delta W_0 = BA = 0$
- By increasing r, one can roughly recover full fine-tuning
- At depolyment, by computing at storing W₀ = W₀ + BA, one can eliminate additional inference latency

Applying LoRA to Transformer

A transformer block contains two types of modules that contain dense weight matrix: attention blocks, feed forward block (MLP). In this paper, LoRA is only adapted to attention weights.

Figure 2: Transformer block

< □ > < □ > < □ > < Ξ > < Ξ > Ξ の < ⊙ 5/16

Self-Attention

A self-attention module contains four dense weight matrices: W_q, W_k, W_v, W_o . In this paper, LoRA is only adapted to W_q and W_v .

Figure 3: Self-attention block

Baselines

- Fine-Tuning (FT): Full fine-tuning
- Bias-only (BitFit): Fine-tuning only the biases
- Prefix-embedding tuning (PreEmbed): Prepending learned embedding of "soft prompt" to the prompt
- Prefix-layer tuning (PreLayer): Prepend learned embedding of "soft prompt" after every Transformer layer

<□> < @> < E> < E> E の < ?/16</p>

Adapter tuning (Adapter): Inserting adapter layers

Model & Method	# Trainable									
	Parameters	MNLI	SST-2	MRPC	CoLA	QNLI	QQP	RTE	STS-B	Avg.
RoB _{base} (FT)*	125.0M	87.6	94.8	90.2	63.6	92.8	91.9	78.7	91.2	86.4
RoB _{base} (BitFit)*	0.1M	84.7	93.7	92.7	62.0	91.8	84.0	81.5	90.8	85.2
RoB _{base} (Adpt ^D)*	0.3M	87.1 ± 0.0	$94.2_{\pm.1}$	$88.5{\scriptstyle\pm1.1}$	$60.8 \pm .4$	$93.1 \pm .1$	$90.2 \pm .0$	$71.5{\scriptstyle\pm2.7}$	$89.7_{\pm 3}$	84.4
RoB _{base} (Adpt ^D)*	0.9M	$87.3_{\pm.1}$	$94.7_{\pm 3}$	$88.4_{\pm.1}$	$62.6_{\pm.9}$	$93.0_{\pm.2}$	$90.6_{\pm.0}$	$75.9_{\pm 2.2}$	$90.3_{\pm.1}$	85.4
RoB _{base} (LoRA)	0.3M	$87.5{\scriptstyle \pm.3}$	$95.1{\scriptstyle \pm .2}$	$89.7 \scriptstyle \pm .7$	$63.4{\scriptstyle\pm1.2}$	$93.3{\scriptstyle \pm.3}$	$90.8 \scriptstyle \pm .1$	$86.6{\scriptstyle \pm.7}$	$91.5{\scriptstyle \pm .2}$	87.2
RoB _{large} (FT)*	355.0M	90.2	96.4	90.9	68.0	94.7	92.2	86.6	92.4	88.9
RoB _{large} (LoRA)	0.8M	$90.6_{\pm .2}$	$96.2_{\pm.5}$	$90.9_{\pm 1.2}$	$68.2_{\pm 1.9}$	$94.9_{\pm.3}$	$91.6_{\pm.1}$	$87.4_{\pm 2.5}$	$92.6_{\pm 2}$	89.0
RoB _{large} (Adpt ^P)†	3.0M	90.2 _{±3}	96.1±3	$90.2_{\pm.7}$	68.3 _{±1.0}	$\textbf{94.8}_{\pm.2}$	$91.9_{\pm.1}$	$83.8_{\pm 2.9}$	$92.1_{\pm.7}$	88.4
RoBlarge (Adpt ^P) [†]	0.8M	90.5±3	$96.6_{\pm 2}$	$89.7_{\pm 1.2}$	$67.8_{\pm 2.5}$	$94.8_{\pm.3}$	$91.7_{\pm.2}$	$80.1_{\pm 2.9}$	$91.9_{\pm.4}$	87.9
RoB _{large} (Adpt ^H)†	6.0M	$89.9_{\pm 5}$	$96.2_{\pm 3}$	$88.7_{\pm 2.9}$	$66.5_{\pm 4.4}$	$94.7_{\pm.2}$	$92.1_{\pm.1}$	$83.4_{\pm1.1}$	$91.0_{\pm 1.7}$	87.8
RoBlarge (Adpt ^H) [†]	0.8M	90.3 ± 3	96.3 ± 5	$87.7{\scriptstyle\pm1.7}$	$66.3{\scriptstyle \pm 2.0}$	$94.7 {\scriptstyle \pm.2}$	$91.5_{\pm.1}$	$72.9{\scriptstyle\pm2.9}$	91.5 ± 5	86.4
RoB _{large} (LoRA)	0.8M	$\textbf{90.6}_{\pm.2}$	$96.2_{\pm.5}$	$\textbf{90.2}_{\pm 1.0}$	$68.2{\scriptstyle\pm1.9}$	$\textbf{94.8}_{\pm.3}$	$91.6_{\pm.2}$	$85.2_{\pm 1.1}$	$92.3_{\pm 5}$	88.6
DeB _{XXL} (FT)*	1500.0M	91.8	97.2	92.0	72.0	96.0	92.7	93.9	92.9	91.1
DeB _{XXL} (LoRA)	4.7M	$91.9_{\pm .2}$	$96.9_{\pm2}$	$92.6_{\pm.6}$	$72.4_{\pm 1.1}$	96.0 ±.1	$92.9_{\pm.1}$	$94.9_{\pm.4}$	$93.0_{\pm 2}$	91.3

Figure 4: Performance on RoBERTa, DeBERTa

Model & Method	# Trainable	E2E NLG Challenge					
	Parameters	BLEU	NIST	MET	ROUGE-L	CIDEr	
GPT-2 M (FT)*	354.92M	68.2	8.62	46.2	71.0	2.47	
GPT-2 M (Adapter ^L)*	0.37M	66.3	8.41	45.0	69.8	2.40	
GPT-2 M (Adapter ^L)*	11.09M	68.9	8.71	46.1	71.3	2.47	
GPT-2 M (Adapter ^H)	11.09M	$67.3_{\pm,6}$	$8.50_{\pm.07}$	$46.0_{\pm.2}$	$70.7_{\pm.2}$	$2.44_{\pm.01}$	
GPT-2 M (FT ^{Top2})*	25.19M	68.1	8.59	46.0	70.8	2.41	
GPT-2 M (PreLayer)*	0.35M	69.7	8.81	46.1	71.4	2.49	
GPT-2 M (LoRA)	0.35M	$70.4_{\pm.1}$	$8.85_{\pm.02}$	$46.8_{\pm.2}$	$71.8_{\pm.1}$	$2.53_{\pm.02}$	
GPT-2 L (FT)*	774.03M	68.5	8.78	46.0	69.9	2.45	
GPT-2 L (Adapter ^L)	0.88M	$69.1_{\pm.1}$	$8.68_{\pm.03}$	$46.3 \pm .0$	$71.4_{\pm.2}$	$2.49 \scriptstyle \pm .0$	
GPT-2 L (Adapter ^L)	23.00M	$68.9_{\pm.3}$	$8.70_{\pm.04}$	$46.1_{\pm.1}$	$71.3_{\pm.2}$	$2.45_{\pm.02}$	
GPT-2 L (PreLayer)*	0.77M	70.3	8.85	46.2	71.7	2.47	
GPT-2 L (LoRA)	0.77M	$70.4_{\pm.1}$	$8.89_{\pm.02}$	$46.8_{\pm.2}$	$72.0_{\pm.2}$	$2.47_{\pm.02}$	

Figure 5: Performance on GPT-2

Model&Method	# Trainable	WikiSQL	MNLI-m	SAMSum
	Farameters	Acc. (%)	Acc. (%)	KI/K2/KL
GPT-3 (FT)	175,255.8M	73.8	89.5	52.0/28.0/44.5
GPT-3 (BitFit)	14.2M	71.3	91.0	51.3/27.4/43.5
GPT-3 (PreEmbed)	3.2M	63.1	88.6	48.3/24.2/40.5
GPT-3 (PreLayer)	20.2M	70.1	89.5	50.8/27.3/43.5
GPT-3 (Adapter ^H)	7.1M	71.9	89.8	53.0/28.9/44.8
GPT-3 (Adapter ^H)	40.1M	73.2	91.5	53.2/29.0/45.1
GPT-3 (LoRA)	4.7M	73.4	91.7	53.8/29.8/45.9
GPT-3 (LoRA)	37.7M	74.0	91.6	53.4/29.2/45.1

Figure 6: Performance on GPT-3

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の Q ↔ 10/16

Q. (Under the constrained budget) which weight matrices in transformer should we apply LoRA to?

A. Small r with more types of weights is better than single type of weights with a large r

	# of Trainable Parameters = 18M						4
Weight Type Rank r	$\begin{bmatrix} W_q \\ 8 \end{bmatrix}$	$\frac{W_k}{8}$	$W_v \over 8$	$\frac{W_o}{8}$	W_q, W_k 4	W_q, W_v 4	W_q, W_k, W_v, W_o 2
WikiSQL ($\pm 0.5\%$) MultiNLI ($\pm 0.1\%$)	70.4 91.0	70.0 90.8	73.0 91.0	73.2 91.3	71.4 91.3	73.7 91.3	73.7 91.7

Figure 7: Performane of different choices of weights subject to LoRA application

<□ > < @ > < E > < E > E の < C 11/16

Q. What is the optimal rank r?

A. LoRA works well with even with an extremely small r. Also increasing r does not guarantee better performance.

	Weight Type	r = 1	r=2	r = 4	r=8	r = 64
WikiSQL(±0.5%)	W_q W_q, W_v W_q, W_w, W_q	68.8 73.4 74.1	69.6 73.3 73.7	70.5 73.7 74.0	70.4 73.8 74.0	70.0 73.5 73.9
MultiNLI (±0.1%)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	90.7 91.3 91.2	90.9 91.4 91.7	91.1 91.3 91.7	90.7 91.6 91.5	90.7 91.4 91.4

Figure 8: Performance of different choices of r

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ♪ ○ ○ ○ 12/16

Q. What is the optimal rank r?

A. LoRA works well with even with an extremely small r. Also increasing r does not guarantee better performance.

	Weight Type	r = 1	r=2	r = 4	r=8	r = 64
WikiSQL(±0.5%)	W_q W_q, W_v W_q, W_w, W_q	68.8 73.4 74.1	69.6 73.3 73.7	70.5 73.7 74.0	70.4 73.8 74.0	70.0 73.5 73.9
MultiNLI (±0.1%)	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	90.7 91.3 91.2	90.9 91.4 91.7	91.1 91.3 91.7	90.7 91.6 91.5	90.7 91.4 91.4

Figure 9: Performance of different choices of r

<□ > < @ > < E > < E > E の < C 13/16

- Q. Why is increasing r not effective?
- A. Top singular vector overlap significantly between r = 8 and r = 64.

Figure 10: Subspace similarity meansured by the Grassmann distance of right-singular unitary matrices for r = 8 and r = 64

 $\phi(A_{r=64},A_{r=8},i,j)$

Q. Does ΔW highly correlate with W?

A. 1) ΔW has higher correlation with W compared to a random matrix

2) ΔW amplifies the directions that were not emphasized in W

3) Amplification magnitude is quite large

		r = 4			r = 6	4
	ΔW_q	W_q	Random	ΔW_q	W_q	Random
$ U^\top W_q V^\top _F =$	0.32	21.67	0.02	1.90	37.71	0.33
$ W_q _F = 61.95$	2	$\Delta W_q _F =$	= 6.91	Δ	$W_q _F =$	= 3.57

Figure 11: Performance of different choices of r

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Thank You

Q & A

◆□ → ◆母 → ◆ ■ → ▲ ■ → ● へ ○ 16/16

A. Aghajanyan, S. Gupta, and L. Zettlemoyer. Intrinsic dimensionality explains the effectiveness of language model fine-tuning. Association for Computational Linguistics, 2021.