Image as Set of Points

Motivation

What is an image and how to extract features?

1. Convolutional Networks

- Image is organized pixels in a rectangular shape
- Extract features via convolutional operation in local region

2. Vision Transformers

- Image is a sequence of patches
- Extract features via attention mechanism in global region

◆□ → < @ → < E → < E → E の Q @ 2/21</p>

3. Context Clusters (CoCs)

- Image is a set of unorganized points
- Extract features via simplified clustering algorithm

SuperPixel

- Segment an image into regions by grouping a set of pixels that share common characteristics
- Common practice for image preprocessing
- Viewed as a type of over-segmentation

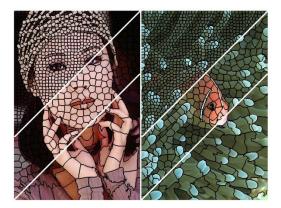


Figure 1: SuperPixel

Context Cluster (Overview)

- 1. View image as a set of points
- 2. Sample c centers
- 3. Aggregate point features within a cluster
- 4. Dispatch within a cluster

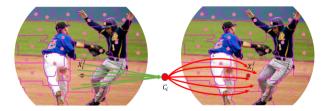


Figure 2: Overview of CoC

Context Cluster Block (Overview)

- 1. Group a set of unorganized points
- 2. Communicate the points within a cluster
- 3. Apply MLP block

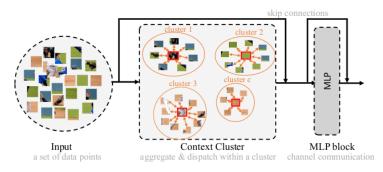


Figure 3: Context Cluster block

Context Cluster Architecture (Overview)

- 1. Reduce the number of points for computational efficiency
- 2. Apply context cluster blocks to extract the features
- 3. Apply task-specific head to the features

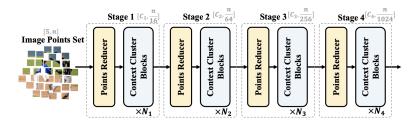


Figure 4: CoC architecture with four stages

From Image to Set of Points

Given an image $\mathbf{I} \in \mathbb{R}^{3 imes w imes h}$,

- 1. enhance the image by adding positional channel from the 2D coordinates information of each pixel $I_{i,j}$
- 2. convert the augmented image to a a collection of points $\mathbf{P} \in \mathbb{R}^{5 \times n}$, where $n = w \times h$

For example, if (i, j)-th pixel of I is given by

$$\mathbf{I}_{i,j} = (r,g,b),$$

it is converted to a point $\mathbf{p} \in \mathbb{R}^5$ in P, where

$$\mathbf{p} = (r, g, b, p_1, p_2),$$

with $[p_1, p_2] = \left[\frac{i}{w} - 0.5, \frac{j}{h} - 0.5\right].$

Point Reducer

- 1. Generate anchors evenly in the space
- 2. Take k nearest neighbors and concatenate them along the channel dimension
- 3. Use FC layer to lower the dimension number

Figure 5: Point reducer

Context Clustering

Given $\mathbf{P} \in \mathbb{R}^{n imes d}$,

- 1. Linearly project \mathbf{P} to \mathbf{P}_s
- 2. Evenly propose c centers (red blocks) in space
- 3. Get center features by averaging k nearest points (blue circle)
- 4. Calculate similarity matrix $\mathbf{S} \in \mathbb{R}^{c \times n}$ between \mathbf{P}_s and centers
- 5. Allocate each point to the most similar center

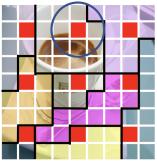


Figure 6: Context clustering

Feature Aggregating

Assume a cluster contains m points, and $s \in \mathbb{R}^m$ is the similarity between m points and the center,

- 1. Map m points to a value space to get $P_\nu \in \mathbb{R}^{m \times d'}$, where d' is the value dimension
- 2. Propose a center ν_c as in the context clustering
- 3. The aggregated feature $g \in \mathbb{R}^{d'}$ is given by,

$$g = \frac{1}{\mathcal{C}} \left(\nu_c + \sum_{i=1}^m \operatorname{sig}(\alpha s_i + \beta) * \nu_i \right),$$

where

$$\mathcal{C} = 1 + \sum_{i=1}^{m} \operatorname{sig}(\alpha s_i + \beta),$$

with learnable scalars α, β , s_i, ν_i being *i*th points in s and P_{ν} respectively.

Aggregated Feature

$$g = \frac{1}{\mathcal{C}} \left(\nu_c + \sum_{i=1}^m \operatorname{sig}(\alpha s_i + \beta) * \nu_i \right)$$

- Why sigmoid? Because empirically better with sigmoid, because no negative value is involved.
- Why not Softmax? Because points do not contradict with one another.
- Why add ν_c ? For numerical stability, and to further emphasize the locality.

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ♪ ■ のへで 11/21

▶ Why scale by C? To control the magnitude.

As shown in Figure 2, the aggregated feature g is dispatched to each point p_i in a cluster as follows:

$$p'_i = p_i + \mathsf{FC}(\mathsf{sig}(\alpha s_i + \beta) * g).$$

Through this, the points in a cluster can communicate and share the features.

Technical Details

- 1. **Multi-head computing.** Use *h* heads, and the outputs of multi-head operations are concatenated and fused by a FC layer
- Region partition. To reduce computational overhead, split the points into several local regions and compute similarity locally:

(

$$\mathcal{O}(ncd) \to \mathcal{O}\left(r\frac{n}{r}\frac{c}{r}d\right),$$

where n is the number of input points (*d*-dimensional), c is the number of centers, and r is the number of local regions

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ ■ のへで 13/21

Experiments

- 1. Image classification on ImageNet-1K
- 2. 3D point cloud classification on ScanObjectNN
- 3. Object detection and instance segmentation on MS-COCO

◆□ ▶ ◆□ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 14/21

4. Semantic segmentation on ADE20K

Image Classification (ImageNet-1K)

	Method	Param.	GFLOPs	Top-1	Throughputs (images/s)
MLP	ResMLP-12 (Touvron et al., 2021a)	15.0	3.0	76.6	511.4
	ResMLP-24 (Touvron et al., 2021a)	30.0	6.0	79.4	509.7
	ResMLP-36 (Touvron et al., 2021a)	45.0	8.9	79.7	452.9
	MLP-Mixer-B/16 (Tolstikhin et al., 2021)	59.0	12.7	76.4	400.8
4	MLP-Mixer-L/16 (Tolstikhin et al., 2021)	207.0	44.8	71.8	125.2
	# gMLP-Ti (Liu et al., 2021a)	6.0	1.4	72.3	511.6
	# gMLP-S (Liu et al., 2021a)	20.0	4.5	79.6	509.4
	 ViT-B/16 (Dosovitskiy et al., 2020) 	86.0	55.5	77.9	292.0
-	 ViT-L/16 (Dosovitskiy et al., 2020) 	307	190.7	76.5	92.8
io	 PVT-Tiny (Wang et al., 2021) 	13.2	1.9	75.1	-
Attention	 PVT-Small (Wang et al., 2021) 	24.5	3.8	79.8	-
Vit	 T2T-ViT-7 (Yuan et al., 2021a) 	4.3	1.1	71.7	-
~4	 DeiT-Tiny/16 (Touvron et al., 2021b) 	5.7	1.3	72.2	523.8
	 DeiT-Small/16 (Touvron et al., 2021b) 	22.1	4.6	79.8	521.3
	 ResNet18 (He et al., 2016) 	12	1.8	69.8	584.9
tio	 ResNet50 (He et al., 2016) 	26	4.1	79.8	524.8
- Pla	 ConvMixer-512/16 (Trockman et al., 2022) 	5.4	-	73.8	-
DAL	 ConvMixer-1024/12 (Trockman et al., 2022) 	14.6	-	77.8	-
Convolution	 ConvMixer-768/32 (Trockman et al., 2022) 	21.1	-	80.16	142.9
	Context-Cluster-Ti (ours)	5.3	1.0	71.8	518.4
ste	Context-Cluster-Ti‡ (ours)	5.3	1.0	71.7	510.8
Cluster	Context-Cluster-Small (ours)	14.0	2.6	77.5	513.0
_	Context-Cluster-Medium (ours)	27.9	5.5	81.0	325.2

Figure 7: Image classification on ImageNet-1K

3D Point Cloud Classification (ScanObjectNN)

Method	mAcc(%)	OA(%)
 SpiderCNN (Xu et al., 2018) 	69.8	73.7
 DGCNN (Wang et al., 2019) 	73.6	78.1
 PointCNN (Li et al., 2018) 	75.1	78.5
 ♦ GBNet (Qiu et al., 2021) 	77.8	80.5
 PointBert (Yu et al., 2022d) 	-	83.1
 Point-MAE (Pang et al., 2022) 	-	85.2
 Point-TnT (Berg et al., 2022) 	81.0	83.5
PointNet (Qi et al., 2017a)	63.4	68.2
PointNet++ (Qi et al., 2017b)	75.4	77.9
♣ BGA-PN++ (Uy et al., 2019)	77.5	80.2
PointMLP (Ma et al., 2022)	83.9	85.4
PointMLP-elite (Ma et al., 2022)	81.8	83.8
PointMLP-CoC (ours)	84.4 ↑0.5	86.2 ^{↑0.8}

Figure 8: Classification on ScanObjectNN

< □ ▷ < @ ▷ < 볼 ▷ < 볼 ▷ 볼 · ♡ < ♡ 16/21

Object Detection vs Semantic Segmentation vs Instance Segmentation

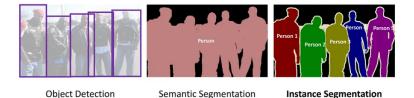


Figure 9: Object detection/semantic segmentation/instance segmentation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへで 17/21

Object Detection and Instance Segmentation on MS-COCO

$$\begin{aligned} \text{Precision} &= \frac{\text{True Positive}}{\text{True Positive} + \text{False Positive}}\\ \text{Intersection over Union (IoU)} &= \frac{\text{Area of Overlap}}{\text{Area of Union}} \end{aligned}$$

 $AP_n = Average Precision with n\% loU threshold$

Family	Backbone	Params	APbox	AP ₅₀ ^{box}	AP ^{box} ₇₅	APmask	AP_{50}^{mask}	AP ₇₅ ^{mask}
Conv.	ResNet-18	31.2M	34.0	54.0	36.7	31.2	51.0	32.7
Attention	 PVT-Tiny 	32.9M	36.7	59.2	39.3	35.1	56.7	37.3
	♥ CoC-Small/4	33.6M	35.9	58.3	38.3	33.8	55.3	35.8
Cluster	CoC-Small/25	33.6M	37.5	60.1	40.0	35.4	57.1	37.9
	♥ CoC-Small/49	33.6M	37.2	59.8	39.7	34.9	56.7	37.0

Figure 10: Object detection and instance segmentation on MS-COCO

Semantic Segmentation on ADE20K

Backbone	Params	mIoU(%)
ResNet18	15.5M	32.9
PVT-Tiny	17.0M	35.7
♥ CoC-Small/4	17.7M	36.6
CoC-Small/25	17.7M	36.4
♥ CoC-Small/49	17.7M	36.3

Figure 11: Semantic segmentation on ADE20K

◆□ ▶ ◆ ● ▶ ◆ ■ ▶ ◆ ■ ◆ ○ へ ⁽²⁾ 19/21

Visualization of Context Clustering

- 1. Cluster the goose as one object context and group background grass together
- 2. Cluster the similar contexts even in the early stage (neck of the goose in the red box)
- 3. Most clusters emphasize the locality, while some show the globality a lot

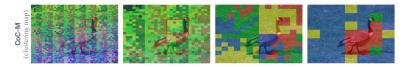


Figure 12: Visualization of clustering map

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ の へ C 20/21

Thank You

Q & A

< □ > < □ > < □ > < Ξ > < Ξ > Ξ > のへで 21/21