History-Guided Video Diffusion

Motivation

How can we condition the video diffusion on a variable length history?

Guiding Video Diffusion with History

Let $x_{\mathcal{T}}$ be a T-frame video clip, with $\mathcal{T}=\{1,\cdots T\}$. Define $\mathcal{H}\subset\mathcal{T}$ as the indices of the history frames, and put $\mathcal{G}=\mathcal{T}\backslash\mathcal{H}$ as the indices of the frames to be generated. Then guiding generation of $x_{\mathcal{G}}$ with history $x_{\mathcal{H}}$ is modeling the conditional distribution $p(x_{\mathcal{G}}\mid x_{\mathcal{H}})$. In theory, this can be done by extending the classifier-free guidance (CFG) with

$$\nabla \log p_k(x_{\mathcal{G}}^k) + \omega \left[\nabla p_k(x^k \mathcal{G} \mid x_{\mathcal{H}}) - \nabla \log p_k(x_{\mathcal{G}}^k) \right].$$

However conventional diffusion models have two challenges modeling this distribution:

- Handling variable length conditioning
 - Fixed-length conditioning architectures
 - Independent conditioning architectures, which are inefficient and mostly limited to short history.
 - But technically, text conditioning is not fixed length...
- Framewise binary dropout performs poorly

Preliminary: Diffusion Forcing

Given a sequence of elements $x_{1:T}$, for instance patches of an image or frames of a video, the conventional diffusion model applies *identical* level of noise to all elements. However, Diffusion Forcing (DF) proposes a novel training framework where diffusion model are trained with independent *varied* noise level for each element.

Diffusion Forcing Transformer (DFoT)

If we allow varied noise level per frame, one can view the history frames as the *noise-free* frames. In other words, video frame with noise level k can be expressed as $x_1^{k_1},\cdots,x_T^{k_T}$, where

$$k_t = \begin{cases} 0 & t \in \mathcal{H} \\ k & t \in \mathcal{G} \end{cases}.$$

Then during training, rather than fixed noise level of history frames to 0, authors follow *per-frame independent noise levels*:

$$\mathbb{E}_{k_{\mathcal{T}}, x_{\mathcal{T}}, \epsilon_{\mathcal{T}}} \left\{ \| \epsilon_{\mathcal{T}} - \epsilon_{\theta}(x_{\mathcal{T}}^{k_{\mathcal{T}}}, k_{\mathcal{T}}) \|^{2} \right\},\,$$

for 1) efficient parallel training, 2) allowing non-causal conditioning on partially masked future frames.

History Guidance

Figure: History guidances

- Vanilla History Guidance (HG-v): Simple application of CFG
- Temporal History Guidance (HG-t)
 - As the length of history grows, the amount of data that is required to cover different combination of frames exponentially increases, which makes model prone to OOD
 - HG-t composes scores conditioned on different subsequences of history, for instance {\mathcal{H}_{long}, \mathcal{H}_{short}}.
- Fractional History Guidance (HG-f)
 - Major drawback of HG-v is that it generates static video.
 - Rather than setting noise level of the history to 0, HG-f introduce mild noise to history frames for variance in the high-frequency details.

Experiment

Figure: Consistency with history

Experiment

(a) Vanilla history guidance significantly improves frame quality and consistency with an increasing guidance scale. We sample with varying guidance scales $\omega=1$ (top, without history guidance), 1.5 (middle), and 3 (bottom).

(b) Fractional history guidance resolves the issue of static videos, improving dynamics by guiding with lower frequencies. We sample with varying frequency scales, with $k_{\mathcal{H}} = 0$ (top, vanilla guidance leading to static videos), 0.3 (middle), and 0.6 (bottom).

Experiment

Figure: Robustness to OOD