
Git Re-Basin: Merging Models modulo
Permutation Symmetries



Motivation

▶ Why are SGD so effective in deep learning?

▶ When linearly interpolation between initialization and final
trained weights, why does loss smoothly and monotonically
decrease?

▶ How can two independently trained models achieve nearly
identical performance? Especially, why do their loss curves look
identical?



Motivation

▶ Why are SGD so effective in deep learning?

▶ When linearly interpolation between initialization and final
trained weights, why does loss smoothly and monotonically
decrease?

▶ How can two independently trained models achieve nearly
identical performance? Especially, why do their loss
curves look identical?



Invariance of Training Dynamics

Conjecture (Permutation invariance, informal)

Most SGD solutions belong to a set whose elements can be
permuted so that zero barrier exists on the linear interpolation
between any two permuted elements. Refer to such solutions as
being linearly mode connected (LMC).

Definition (Loss barrier)

Given two points ΘA, ΘB such that L(ΘA) ≃ L(ΘB), the loss
barrier is defined as

max
λ∈[0,1]

L((1− λ)ΘA + λΘB)−
1

2
(L(ΘA) + L(ΘB)) .

Note here loss barrier is non-negative, and zero indicates L(ΘA) and
L(ΘB) can be interpolated by a flat line or positive curvature curve.



Mode Connectivity

Local optimas for deep neural networks are connected by very simple
curves, such as polygon chain.

Figure 1: segment (left), Bezier curve (middle), Polygon chain (right)

Figure 2: Train loss (left) and Test error (right) along specified curves



Setup

For simplicity, consider L-layered MLP,

f (x,Θ) = zL+1, zℓ+1 = σ (Wℓzℓ + bℓ) , z1 = x,

where x is an input, Θ = (W1, b1, · · ·WL, bL), and σ denotes an
element-wise nonlinear activation function. Also, consider a loss,
L (Θ), that measures the performance of the weight Θ.



Permutation Symmetries of Weight Space

Consider a permutation matrix P ∈ Sd, where Sd is the set of all
d× d permutation matrices, or the symmetric group. Then with any
intermediate output zℓ+1 of ℓth layer, we have

zℓ+1 = P⊺Pzℓ+1 = P⊺Pσ (Wℓzℓ + bℓ) = P⊺σ (PWℓzℓ +Pbℓ) .

Using above equalities, define Θ′ from Θ by keeping all parameters
same, except

W ′
ℓ = PWℓ, b′ℓ = Pbℓ, W ′

ℓ+1 = Wℓ+1P
⊺.

Then two models parameterized by Θ and Θ′, would be functionally
equivalent, i.e. f (x,Θ) = f (x,Θ′).
Denote π(Θ) as such functionality-preserving permutation of Θ.



Rewriting the Conjecture

Let ΘA,ΘB be the weights of two independently trained models, A
and B respectively. Then there exists a functionality-preserving
permutation π(ΘB) such that ΘA and π(ΘB) are LMC.

Figure 3: Visualization of the conjecture



Permutation Selection Methods

However, naively exploring all permutation symmetries is impossible.

Architecture Num. Permutation Symmetries

MLP (3 layers, 512 width) 10 ∧ 3498
VGG16 10 ∧ 35160
ResNet50 10 ∧ 55109

Table 1: Numbers of permutation symmetries of DNNs are very large.

Moreover, evaluating the loss barrier could also be very expensive.



Permutation Selection Methods

Three methods are proposed to cope with these problems:

▶ Matching Activations

▶ Matching Weights

▶ Learning Permutations with a Straight-Through Estimator



Matching Activations

Assumption

Neural network units that fire together, wire together.

Method
Match the activations of model A and B with the regression
framework by constraining ordinary least squares. For the
intermediate outputs of ℓth layer, Z(A), Z(B) ∈ Rd×n, choose Pℓ

such that

Pℓ = argmin
P∈Sd

n∑
i=1

∥∥∥Z(A)
:,i −PZ

(B)
:,i

∥∥∥2 (1)

= argmax
P∈Sd

n∑
i=1

〈
Z

(A)
:,i ,PZ

(B)
:,i

〉
= argmax

P∈Sd

〈
P, Z(A)

(
Z(B)

)⊺〉
F
,

where ⟨A,B⟩F is the Frobenius norm.



Matching Activations
The equation (1) is a linear assignment problem (LAP), for which
efficient and practical algorithms are known: Hungarian algorithm
O(n4), Jonker-Volgenant algorithm O(n3).

Definition
Linear assignment problem is a fundamental combinatorial
optimization problem. In most general form, the problem consists of
a number of agents and a number of jobs. To solve the problem one
need to find a 1-1 correspondence between agents and jobs that
minimize the assignment cost. For example, in clustering problem,
assigning class label to each cluster can be viewed as LAP.

Figure 4: Typical LAP



Matching Weights

Assumption

If
[
W

(A)
ℓ

]
i
and

[
W

(B)
ℓ

]
j
were equal, then they would compute

exactly the same features, and hence would be associated.

Method (Naive)

argmax
π={Pi}

〈
W

(A)
1 ,P1W

(B)
1

〉
F
+
〈
W

(A)
2 ,P2W

(B)
2 P⊺

1

〉
F

(2)

+ · · ·+
〈
W

(A)
L ,W

(B)
L P⊺

L−1

〉
F

However equation (2), coined as sum of bilinear assignments
problem (SOBLAP), is NP-hard. Contrast to previous LAP,
permutations of both rows AND columns should be considered,
making it difficult to solve.



Matching Weights

However, if we focus on a single Pℓ, the problem can be reduced to
a LAP,

argmax
Pℓ

〈
W

(A)
ℓ ,PℓW

(B)
ℓ P⊺

ℓ−1

〉
F
+

〈
W

(A)
ℓ+1,Pℓ+1W

(B)
ℓ+1Pℓ

⊺
〉
F

= argmax
Pℓ

〈
Pℓ,W

(A)
ℓ Pℓ−1

(
W

(B)
ℓ

)⊺
+
(
W

(A)
ℓ+1

)⊺
Pℓ+1W

(B)
ℓ+1

〉
F



Matching Weights

Method (Permutation Coordinate Descent)

Algorithm 1: Permutation Coordinate Descent

Initialize: P1 ← I, · · ·PL−1 ← I
while not converge do

for ℓ ∈ RandomPermutation(1, · · · , L− 1) do
Pℓ ←
SolveLAP

(
W

(A)
ℓ Pℓ−1

(
W

(B)
ℓ

)⊺
+
(
W

(A)
ℓ+1

)⊺
Pℓ+1W

(B)
ℓ+1

)
;

end

end

Note here weight matching ignores the data distribution entirely.
However surprisingly, it shows competitive results compared to the
data-aware methods.



Matching Weights

Lemma 1
Algorithm 1 terminates.

Proof.
Consider a DAG whose vertex is each possible permutation
πi = {P1, · · ·PL−1}, and edge πi → πj if πj can be reached from
πi by updating single permutation Pℓ (as in Algorithm 1). Let
ρ(π) = vec(ΘA) · vec(π(ΘB)). Then πi → πj implies that
ρ(πi) < ρ(πj). Now suppose that Algorithm 1 does not converge.
Since there exist only finitely many vertices, this implies that there
exists a cycle. Contradiction.



Learning Permutations with a STE

Method
”Learn” Θ̃B such that

min
Θ̃B

L
(
1

2

(
ΘA + proj

(
Θ̃B

)))
,

where
proj(Θ) = argmax

π
vec(Θ) · vec(π(ΘB)).

However, the projection operator proj(·) is non-differentiable.



Straight-Through Estimator (STE)
Consider a neural network with a binarize activation f , for example,

f(x) =

{
1 x > 0

0 x ≤ 0.

Then the gradient of such activation is 0. One popular solution for
this is to use Straight-Through Estimator that estimates the
gradient of function by bypassing the activation function.

Figure 5: Visualization of STE



Straight-Through Estimator (STE)

Similarly, when learning the permutations, we can use the bypass, or

STE. In the forward pass, we use proj
(
Θ̃B

)
to compute the loss,

and in the backward pass, we bypass the projection and use Θ̃B to
compute the gradient.



Learning Permutations with a STE

Although ”learning” the permutation utilize the advantages of both
activation matchings and weight matchings, it comes at a very steep
computational cost.



Experiment

In all cases, permuting the weights significantly improved over the
naive interpolation. As expected the STE matching performed the
best (by surprisingly small margin), however at the great cost.
Activation matching and weight matching performed similarly, but
the latter is faster and does not require the data.

Figure 6: Loss when interpolating between two models trained on MNIST,
CIFAR10, and ImageNet



Experiment

Although one could guess that entire weight space is in a single
basin modulo permutation symmetry, it is not true. The LMC seems
to be a property of SGD training.

Figure 7: Loss barrier dynamics as the training proceeds.



Experiment

It is a conventional wisdom that wider architecture is easier to
optimze. Similarly there is a clear relationship between model width
and linear mode connectivity.

Figure 8: Loss barrier and width of the model



Experiment

Consider the case where models can be trained on each dataset
separately, but cannot train in aggregate. Can we merge these
models so that it can perform well on the whole dataset?

Figure 9: Merging models trained on disjoint datasets

Model A is trained on dataset A, containing 20% of samples
labelled 0-49, 80% of samples labelled 50-99 of CIFAR-100, and
Model B is trained on dataset B, that contains rest of the dataset.



Counterexample

Consider a 2-dimensional binary classification task:

x ∼ Unif
(
[−1, 1]2

)
, y = 1x1<0 and x2>0

Figure 10: Dataset visualization



Counterexample
Following 2-layered MLPs with 2 hidden units with ReLU activation
can perfectly fit the data:

fA(x) =
[
−1 −1

]
σ

([
−1 0
0 1

]
σ

([
−1 0
0 −1

]
x+

[
1
0

])
+

[
1
0

])
fB(x) =

[
−1 −1

]
σ

([
1 0
0 −1

]
σ

([
1 0
0 1

]
x+

[
0
1

])
+

[
0
1

])
However there exists no permutation that satisfies LMC.

Figure 11: Counterexample



Evaluation

ICLR 2023 Review: 8/10, 8/10, 10/10

”Dear authors, · · · I believe that the main contribution of this paper
is not algorithmic, but rather conceptual · · · I believe that this paper
provides an interesting new perspective on the structure of the loss
surfaces of neural networks · · · I still believe that the paper brings
value to the community and should be accepted to the conference.”


