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Trainig Data Attribution for Diffusion Models
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Key Question

What is the influence of a piece of training data over a given
generated sample?
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Key Question (Reformulated)

If the model had not been trained on this piece of training data,
how different would the model output look?
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Strategy

Given: a pretrained model, exogenous noise (input), sample
generated by the exogenous noise, a piece of training data

1. Unlearn the piece of training data from the model

2. Generate a counterfactual sample using the exogenous noise

3. Compare the original sample and the counterfactual sample
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Countefactual Sampling

Recall that (roughly speaking) DDPM generates an image by
recursively sampling:

xT = zT (1)

xt−1 = µθ(xt, t) + zt−1 (2)

where zt ∼ N (0, I). Hence by keeping track of (zt), one can
generate a counterfactual sample by

x̃T = zT (3)

x̃t−1 = µθ̃(x̃t, t) + zt−1, (4)

to measure only the effect of change in parameters on the generated
samples.



6/18

Challenges

1. Unlearning training data
▶ Retrain the model from scratch → Expensive
▶ Use approximation methods → Hard to assess the accuracy in

the context of diffusion models

2. Generation of counterfactuals
▶ Especially expensive for diffusion models
▶ E.g. evaluate counterfactuals for all training data samples
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Encoded Ensembles

▶ Diffusion model f(x, t, θ), where x is the input, t is the time,
and θ is the trainable parameters

▶ X: total training data, X = 2X

▶ A(S, r): training procedure that takes a set of training samples
and the exogenous noise, and outputs the trained parameters

Denote an ensemble of diffusion models fe as

fe(x, t) = E
S∼X

[
E

r∼R
[f (x, t,A(S, r))]

]
. (5)

Then if we only consider models trained with subsets that do not
contain some point x̃, we have

f−x̃
e (x, t) =

1

Pr(x̃ ∈ S′ ∼ X )
E

S∼X

[
E

r∼R
[f(x, t,A(S, r)1x̃ ̸∈S ]

]
.

(6)
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Encoded Ensembles

How to form an ensemble:

1. Assign a unique n length bit vector with fixed hamming weight
h (exactly h elements are nonzero) to each training sample.

2. Create n training subsets where ith subset contains exactly the
training samples whose ith element of assigned bit vector is 1.

3. Form encoded ensemble f̂e using n models that are
independently trained with n training subsets.
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Encoded Ensembles

Figure 1: Encoded ensembles
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Encoded Ensembles

Advantages

▶ Only need O(log(|X|)1+ϵ) models for any arbitrary nonzero ϵ.

▶ For each sample in the training data, there exists at least one
model in the ensemble that has not seen it during training.

▶ (With mild condition), as n grows, the encoded ensemble f̂e is
a unbiased estimator of fe.

▶ Similarly as n grows, f̂−x̃
e is a unbiased estimator of f−x̃

e .
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Encoded Ensembles

Does ensemble generate coherent output?

Figure 2: FID scores of ensemble and individual models
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Encoded Ensembles
Does ensemble converges?

Figure 3: Ensemble converges as size increases
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Jacobian Approximation

Let θ1, · · · , θn be the parameters for the models of the given
encoded ensemble f̂e, and let v be a n-dimensional vector with
non-negative entries. Then define an operation · by(

f̂e · v
)
(x, t) =

n∑
i=1

f(x, t, θi)vi. (7)

Note that for u0 = (1/n, · · · , 1/n), we have

f̂e · u0 = f̂e. (8)

Also for a given point x̃, we can define u−x̃ such that

f̂e · u−x̃ = f̂−x̃
e . (9)
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Jacobian Approximation

Now define y(v, ϵ) as the sample generated by an exogenous noise ϵ,
and denoiser f̂e · v. Then for given v and fixed exogenous noise ϵ,
using the first-order Taylor expansion around u0, we have

y(v, ϵ) = y(u0, ϵ) +
∂y(x, ϵ)

∂x

∣∣∣
x=u0

(v − u0) +O(∥v − u0∥2). (10)

Hence we can approximate the counterfactual sample by

y(u−x̃, ϵ) ≃ y(u0, ϵ) +
∂y(x, ϵ)

∂x

∣∣∣
x=u0

(u−x̃ − u0). (11)
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Jacobian Approximation
How well does influecne measured by Jacobian approximation aligns
with true influence?
▶ Last step predicted noise: At last step, drop the outputs of all

ablated models
▶ Individual models: Negate residuals (individually generated

image - original image) of all ablated models

Figure 4: Correlation with true influence
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Experiments

Figure 5: Training data attribution
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Experiments

Figure 6: Top10 most influential training samples
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Thank You

Q & A


