Trainig Data Attribution for Diffusion Models



Key Question

What is the influence of a piece of training data over a given
generated sample?



Key Question (Reformulated)

If the model had not been trained on this piece of training data,
how different would the model output look?



Strategy

Given: a pretrained model, exogenous noise (input), sample
generated by the exogenous noise, a piece of training data

1. Unlearn the piece of training data from the model
2. Generate a counterfactual sample using the exogenous noise

3. Compare the original sample and the counterfactual sample



Countefactual Sampling

Recall that (roughly speaking) DDPM generates an image by
recursively sampling:

xrrT = 2T (1)
ri_1 = pg(Te, 1) + 201 (2)

where z; ~ N(0,1). Hence by keeping track of (z;), one can
generate a counterfactual sample by

i‘T = 2T (3)
Ty = ,ué({i‘ta t) + 2t-1, (4)

to measure only the effect of change in parameters on the generated
samples.



Challenges

1. Unlearning training data

» Retrain the model from scratch — Expensive
» Use approximation methods — Hard to assess the accuracy in
the context of diffusion models

2. Generation of counterfactuals

» Especially expensive for diffusion models
> E.g. evaluate counterfactuals for all training data samples



Encoded Ensembles

» Diffusion model f(z,t,0), where x is the input, ¢ is the time,
and 6 is the trainable parameters

> X: total training data, X = 2%X

» A(S,r): training procedure that takes a set of training samples
and the exogenous noise, and outputs the trained parameters

Denote an ensemble of diffusion models f. as

fe.t) = E [E [f(MA(S,r))}] (5)

S~X [r~R

Then if we only consider models trained with subsets that do not
contain some point Z, we have
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Encoded Ensembles

How to form an ensemble:
1. Assign a unique n length bit vector with fixed hamming weight
h (exactly h elements are nonzero) to each training sample.

2. Create n training subsets where ith subset contains exactly the
training samples whose ith element of assigned bit vector is 1.

3. Form encoded ensemble fe using n models that are
independently trained with n training subsets.



Encoded Ensembles
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Figure 1. Encoded ensembles



Encoded Ensembles

Advantages
» Only need O(log(]X|)**€) models for any arbitrary nonzero e.

» For each sample in the training data, there exists at least one
model in the ensemble that has not seen it during training.

» (With mild condition), as n grows, the encoded ensemble fe is
a unbiased estimator of f..

> Similarly as n grows, f. % is a unbiased estimator of f; 7.



Encoded Ensembles

Does ensemble generate coherent output?
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Figure 2: FID scores of ensemble and individual models



Encoded Ensembles
Does ensemble converges?
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Figure 3: Ensemble converges as size increases



Jacobian Approximation

Let 01, -, 0, be the parameters for the models of the given
encoded ensemble f., and let v be a n-dimensional vector with
non-negative entries. Then define an operation - by

(fe ’ U) (.’L’,t) = Zf(x7t7 el)vl (7)
i=1
Note that for up = (1/n,---,1/n), we have
fe “Up = fe- (8)

Also for a given point &, we can define u_z such that

fe‘u—i:f;j' (9)



Jacobian Approximation

Now define y(v, €) as the sample generated by an exogenous noise ¢,
and denoiser f. - v. Then for given v and fixed exogenous noise ¢,
using the first-order Taylor expansion around ug, we have

Oy(z,€)

o (v —up) + O(||v — uo||*). (10)

T=ug

y(v,€) = y(uo, €) +

Hence we can approximate the counterfactual sample by

y(z,€)
ox

(u_i —’u,()). (11)

T=ug

y(u_z,€) ~ y(ug,€) +



Jacobian Approximation
How well does influecne measured by Jacobian approximation aligns
with true influence?
> Last step predicted noise: At last step, drop the outputs of all
ablated models
» Individual models: Negate residuals (individually generated
image - original image) of all ablated models
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Figure 4: Correlation with true influence



Experiments
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Figure 5: Training data attribution



Experiments
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Figure 6: Topl0 most influential training samples



Thank You

Q& A



