<□ > < □ > < □ > < Ξ > < Ξ > Ξ の Q · 1/25

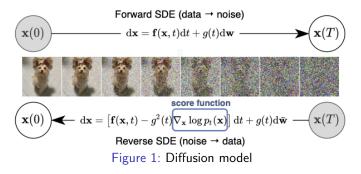
Diffusion

▶ Forward: Diffuse $\mathbf{x}_0 \sim p_{\mathsf{data}}(\mathbf{x})$ with a SDE

$$d\mathbf{x} = \mathbf{f}\left(\mathbf{x}, t\right) dt + g(t) d\mathbf{w}$$

• Reverse: Denoise $\mathbf{x}_T \sim p_T(\mathbf{x})$ with the reverse-time SDE

$$d\mathbf{x} = \left[\mathbf{f}(\mathbf{x}, t) - g(t)^2 \nabla_{\mathbf{x}} \log p_t(\mathbf{x})\right] dt + g(t) d\overline{\mathbf{w}}$$



Motivation

Iterative sampling: progressively denoising a random noise vector

- + Small-sized model can unroll into a larger computational graph: Score model $\mathbf{s}_{\phi}(\mathbf{x}_t, t)$ is typically UNet, where time embedding of t allows one model to deal with all the time step
- $\times 10\ 2000$ sampling time compared to single-step generative models (e.g. GANs, VAEs, normalizing flows)

Can we make a **single-step generation** without sacrificing the advantage of iterative refinement?

<□ > < 圖 > < 圖 > < 圖 > < 圖 > < 圖 > < 圖 > < 3/25</p>

Consistency Model (Overview)

- Use Probability Flow (PF) ODE instead of SDE to diffuse
- Learn model to have *self-consistency*: points on the same trajectory are mapped to the same initial point
- Use the model to retrieve the ODE trajectory initialized by a random noise vector

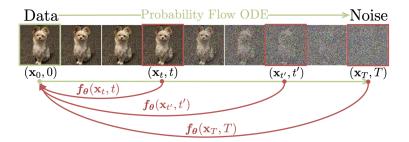


Figure 2: Consistency Model

Probability Flow ODE

Given a SDE

$$\mathrm{d}\mathbf{x}_t = \boldsymbol{\mu}(\mathbf{x}_t, t) \mathrm{d}t + \sigma(t) \mathrm{d}\mathbf{w}_t,$$

there exists a Probability Flow ODE, or a deterministic process

$$d\mathbf{x}_t = \left[\boldsymbol{\mu}(\mathbf{x}_t, t) - \frac{1}{2}\sigma(t)^2 \nabla \log p_t(\mathbf{x}_t)\right] dt,$$
 (1)

<□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り ♀ 5/25

whose trajectory have the same marginal probability density as that of SDE.

Diffusion (PF ODE)

Sampling procedure of a diffusion model using PF ODE, with $\mu({\bf x},t)={\bf 0},$ and $\sigma(t)=\sqrt{2t}$

- 1. Train a score model $\mathbf{s}_{\phi}(\mathbf{x},t) \simeq \nabla \log p_t(\mathbf{x})$ via score matching
- 2. Plug in s_{ϕ} in Eq. (1) to obtain the *empirical PF ODE*

$$\frac{\mathsf{d}\mathbf{x}_t}{\mathsf{d}t} = -t\mathbf{s}_{\boldsymbol{\phi}}(\mathbf{x}_t, t) \tag{2}$$

- 3. Sample $\hat{\mathbf{x}}_T \sim \pi = \mathcal{N}(\mathbf{0}, T^2 \mathbf{I})$ to initialize the ODE
- 4. Solve the ODE with any numerical ODE solver to obtain a trajectory $\{\mathbf{x}_t\}_{t\in[0,T]}$
- 5. Then \mathbf{x}_0 can be view as an approximate of a sample from $p_{\mathsf{data}}(\mathbf{x})$
- * For numerical stability, one typically solve for \mathbf{x}_ϵ instead of \mathbf{x}_0

Definition

Given a solution trajectory $\{\mathbf{x}_t\}_{t\in[\epsilon,T]}$ of a PF ODE in Eq. (1), the *consistency function* is a function defined by

 $\mathbf{f}:(\mathbf{x}_t,t)\mapsto\mathbf{x}_\epsilon.$

A consistency function is *self-consistent*: if its outputs are consistent for any pairs (\mathbf{x}_t, t) on the same trajectory.

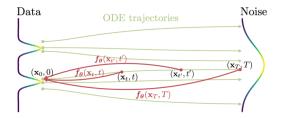


Figure 3: Consistency model and PF ODE trajectory

Note for any consistency function $\mathbf{f}(\cdot, \cdot)$, $\mathbf{f}(\cdot, \epsilon)$ is an identity function. Hence to parameterize a consistency function, one must satisfy such *boundary condition*.

Parameterization (Simple)

We can simply parameterize a consistency function by

$$\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}, t) = \begin{cases} \mathbf{x} & t = \epsilon \\ F_{\boldsymbol{\theta}}(\mathbf{x}, t) & t \in (\epsilon, T] \end{cases}$$
(3)

◆□ → ◆□ → ◆ □ → ▲ ● → ● → ○ 8/25

Parameterization (Skip Connection)

We can also parameterize a consistency function with a skip connection by

$$\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x},t) = c_{\mathsf{skip}}(t)\mathbf{x} + c_{\mathsf{out}}(t)F_{\boldsymbol{\theta}}(\mathbf{x},t),\tag{4}$$

where $c_{\rm skip}$ and $c_{\rm out}$ are differentiable functions with $c_{\rm skip}(\epsilon)=1,$ and $c_{\rm out}(\epsilon)=0.$

- (4) has some advantage over (3):
 - 1. Differentiable at $t = \epsilon$
 - 2. Resemblance with strong diffusion architectures such as EDM.

Training

- 1. Consistency Distillation (CD): Consistency model distills the knowledge of a pre-trained diffusion model into a single-step sampler
- 2. Consistency Training (CT): Consistency model is trained in isolation, without dependence on pre-trained diffusion models

◆□ ▶ ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ⑦ Q ○ 10/25

Given a pre-trained score model $\mathbf{s}_{oldsymbol{\phi}}(\mathbf{x},t)$,

1. Discretize the time horizon $[\epsilon,T]$ into N-1 sub-intervals, with boundaries

$$\epsilon = t_1 < t_2 < \dots < t_N = T.$$

2. Using a numerical solver, from $\mathbf{x}_{t_{n+1}}$ we can get an accurate approximate of \mathbf{x}_{t_n} by

$$\hat{\mathbf{x}}_{t_n}^{\phi} := \mathbf{x}_{t_{n+1}} + (t_n - t_{n+1}) \Phi(\mathbf{x}_{t_{n+1}}, t_{n+1}; \phi), \qquad (5)$$

where $\Phi({\bf x},t;{\pmb \phi})$ is the update function of a one-step ODE solver applied to empirical PF ODE

- * For sufficiently large N, such approximation is accurate
- * For example, using Euler solver, we have

$$\hat{\mathbf{x}}_{t_n}^{\phi} := \mathbf{x}_{t_{n+1}} - (t_n - t_{n+1})t_{n+1}\mathbf{s}_{\phi}(\mathbf{x}_{t_{n+1}}, t_{n+1})$$

- 3. Sample $\mathbf{x} \sim p_{\mathsf{data}}$, and randomly select t_n
- 4. Sample $\mathbf{x}_{t_{n+1}}$ from the transition density $\mathcal{N}(\mathbf{x}, t_{n+1}^2 \mathbf{I})$
- 5. Compute $\hat{\mathbf{x}}_{t_n}^{\boldsymbol{\phi}}$ using ODE solver according to Eq. (5)
- 6. Train the consistency model by minimizing its output differences between $\mathbf{x}_{t_{n+1}}$ and $\hat{\mathbf{x}}_{t_n}^{\phi}$, using *consistency distillation loss* defined as

$$\mathcal{L}_{\mathsf{CD}}^{N}(\boldsymbol{\theta}, \boldsymbol{\theta}^{-}; \boldsymbol{\phi}) := \mathbb{E}\left[\lambda(t_{n})d\left(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}_{t_{n+1}}, t_{n+1}), \mathbf{f}_{\boldsymbol{\theta}^{-}}(\hat{\mathbf{x}}_{t_{n}}^{\boldsymbol{\phi}}, t_{n})\right)\right]$$
(6)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ ○ ○ 12/25

- Expectation is taken over $\mathbf{x} \sim p_{\text{data}}, n \sim \mathcal{U}[1, N-1]$, and $\mathbf{x}_{t_{n+1}} \sim \mathcal{N}(\mathbf{x}, t_{n+1}\mathbf{I})$
- $\lambda(\cdot)$: positive weighting function
- ▶ $heta^-$: running average of past values of heta
- $d(\cdot, \cdot)$: metric function (e.g. $\ell_1 \ell_2$, LPIPS)

Algorithm 1: Consistency Distillation (CD)

Input: dataset \mathcal{D} , initial model parameter $\boldsymbol{\theta}$, learning rate η , ODE solver $\Phi(\cdot, \cdot; \phi), d(\cdot, \cdot), \lambda(\cdot)$, and μ

 $\theta^- \leftarrow \theta$

Theorem 1 (Informal)

Under some reasonable regularity conditions, if $\mathcal{L}_{\mathsf{CD}}^N(\pmb{\theta},\pmb{\theta};\pmb{\phi})=0$, we have

$$\sup_{n,\mathbf{x}} \|\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x},t_n) - \mathbf{f}(\mathbf{x},t_n;\boldsymbol{\phi})\|_2 = \mathcal{O}((\Delta t)^p).$$

◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ○ ○ ○ 14/25

Need to estimate the score function $\nabla \log p_t(\mathbf{x}_t)$ without a pre-trained diffusion model. To do so, we use the following lemma:

Lemma 1 Let $\mathbf{x} \sim p_{\mathsf{data}}(\mathbf{x}), \mathbf{x}_t \sim \mathcal{N}(\mathbf{x}_t; \mathbf{x}, t^2 \mathbf{I})$ which results as

$$p_t(\mathbf{x}_t) = p_{\mathsf{data}}(\mathbf{x}) \otimes \mathcal{N}(\mathbf{0}, t^2 \mathbf{I}).$$

Then we have

$$\nabla \log p_t(\mathbf{x}) = -\mathbb{E}\left[\frac{\mathbf{x}_t - \mathbf{x}}{t^2} \,\Big| \, \mathbf{x}_t\right] \tag{7}$$

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ ⑦ Q ^Q 15/25

 ∇

Proof. From $\nabla \log p_t(\mathbf{x}_t) = \nabla_{\mathbf{x}_t} \log \int p_{\mathsf{data}}(\mathbf{x}) p(\mathbf{x}_t | \mathbf{x}) \mathsf{d}\mathbf{x}$,

$$\log p_{t}(\mathbf{x}_{t}) = \frac{\int p_{\mathsf{data}}(\mathbf{x}) \nabla_{\mathbf{x}_{t}} p(\mathbf{x}_{t} \mid \mathbf{x}) d\mathbf{x}}{\int p_{\mathsf{data}}(\mathbf{x}) p(\mathbf{x}_{t} \mid \mathbf{x}) \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t} \mid \mathbf{x}) d\mathbf{x}}$$

$$= \frac{\int p_{\mathsf{data}}(\mathbf{x}) p(\mathbf{x}_{t} \mid \mathbf{x}) \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t} \mid \mathbf{x}) d\mathbf{x}}{\int p_{\mathsf{data}}(\mathbf{x}) p(\mathbf{x}_{t} \mid \mathbf{x}) \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t} \mid \mathbf{x}) d\mathbf{x}}$$

$$= \frac{\int p_{\mathsf{data}}(\mathbf{x}) p(\mathbf{x}_{t} \mid \mathbf{x})}{p_{t}(\mathbf{x}_{t})} \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t} \mid \mathbf{x}) d\mathbf{x}$$

$$= \int \frac{p_{\mathsf{data}}(\mathbf{x}) p(\mathbf{x}_{t} \mid \mathbf{x})}{p_{t}(\mathbf{x}_{t})} \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t} \mid \mathbf{x}) d\mathbf{x}$$

$$= \int p(\mathbf{x} \mid \mathbf{x}_{t}) \nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t} \mid \mathbf{x}) d\mathbf{x}$$

$$= \mathbb{E} \left[\nabla_{\mathbf{x}_{t}} \log p(\mathbf{x}_{t} \mid \mathbf{x}) \mid \mathbf{x}_{t} \right]$$

$$= -\mathbb{E} \left[\frac{\mathbf{x}_{t} - \mathbf{x}}{t^{2}} \mid \mathbf{x}_{t} \right]$$

Theorem 2 (Informal)

Under some reasonable regularity conditions, if we use Euler ODE solver, we have

$$\mathcal{L}_{\mathsf{CD}}^{N}(\boldsymbol{\theta}, \boldsymbol{\theta}^{-}; \boldsymbol{\phi}) = \mathcal{L}_{\mathsf{CT}}^{N}(\boldsymbol{\theta}, \boldsymbol{\theta}^{-}) + o(\Delta t), \tag{8}$$

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ ♪ ↓ ■ ♪ ↓ □ ♪ ↓ □ ▶ ↓ ■ ♪ ↓ ■ ♪ ↓ ■ ♪ ↓ ■ ♪ ↓ ■ ♪ ↓ □ ↓ 17/25

where *consistency training* loss $\mathcal{L}_{CT}^{N}(\boldsymbol{\theta}, \boldsymbol{\theta}^{-})$ is defined as

$$\mathbb{E}\left[\lambda(t_n)d(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x}+t_{n+1}\mathbf{z},t_{n+1}),\mathbf{f}_{\boldsymbol{\theta}^-}(\mathbf{x}+t_n\mathbf{z},t_n))\right],$$

with $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}).$

Algorithm 2: Consistency Training (CT)

Input: dataset \mathcal{D} , initial model parameter θ , learning rate η , step scheduler $N(\cdot)$, EMA decay rate schedule $\mu(\cdot)$, $d(\cdot, \cdot)$ and $\lambda(\cdot)$

 $\pmb{\theta}^- \leftarrow \pmb{\theta} \text{ and } k \leftarrow 0$

$$\begin{array}{l} \mbox{while not converge do} \\ \mbox{Sample } \mathbf{x} \sim \mathcal{D} \mbox{ and } n \sim \mathcal{U}[1, N(k) - 1] \\ \mbox{Sample } \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ \mbox{} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-) \leftarrow \lambda(t_n) d(\mathbf{f}_{\boldsymbol{\theta}}(\mathbf{x} + t_{n+1}\mathbf{z}, t_{n+1}), \mathbf{f}_{\boldsymbol{\theta}^-}(\mathbf{x} + t_n\mathbf{z}, t_n)) \\ \mbox{} \boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \eta \nabla_{\boldsymbol{\theta}} \mathcal{L}(\boldsymbol{\theta}, \boldsymbol{\theta}^-) \\ \mbox{} \boldsymbol{\theta}^- \leftarrow \mbox{stopgrad } (\mu(k) \boldsymbol{\theta}^- + (1 - \mu(k)) \boldsymbol{\theta}) \\ \mbox{} k \leftarrow k + 1 \\ \mbox{end} \end{array}$$

Sampling (One-step)

Given a trained consistency model $\mathbf{f}_{\boldsymbol{\theta}}(\cdot,\cdot)$,

- 1. Sample $\hat{\mathbf{x}}_T \sim \mathcal{N}(\mathbf{0}, T^2 \mathbf{I})$
- 2. Evaluate $\hat{\mathbf{x}}_{\epsilon} = \mathbf{f}_{\theta}(\hat{\mathbf{x}}_T, T)$

Sampling (Multi-step)

Algorithm 3: Multi-Step Consistency Sampling

Input: Consistency model $\mathbf{f}_{\theta}(\cdot, \cdot)$, sequence of time points $\tau_1 > \tau_2 > \cdots > \tau_{N-1}$, initial noise $\hat{\mathbf{x}}_T$

 $\mathbf{x} \leftarrow \mathbf{f}_{\boldsymbol{\theta}}(\hat{\mathbf{x}}_T, T)$

$$\begin{aligned} & \text{for } n = 1 \text{ to } N - 1 \text{ do} \\ & \text{Sample } \mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}) \\ & \hat{\mathbf{x}}_{\tau_n} \leftarrow \mathbf{x} + \sqrt{\tau_n^2 - \epsilon^2} \mathbf{z} \\ & \mathbf{x} \leftarrow \mathbf{f}_{\boldsymbol{\theta}} \left(\hat{\mathbf{x}}_{\tau_n}, \tau_n \right) \end{aligned}$$

Experiments

METHOD	NFE (\downarrow)	$FID(\downarrow)$	IS (†)	METHOD	NFE (\downarrow)	$FID(\downarrow)$	Prec. (†)	Rec. (
Diffusion + Samplers				ImageNet 64×64				
DDIM (Song et al., 2020)	50	4.67		PD [†] (Salimans & Ho, 2022)	1	15.39	0.59	0.62
DDIM (Song et al., 2020)	20	6.84		DFNO ^{†*} (Zheng et al., 2022)	1	8.35		
DDIM (Song et al., 2020)	10	8.23		CD [†]	1	6.20	0.68	0.63
DPM-solver-2 (Lu et al., 2022)	12	5.28		PD [†] (Salimans & Ho, 2022)	2	8.95	0.63	0.65
DPM-solver-3 (Lu et al., 2022)	12	6.03		CD [†]	2	4.70	0.69	0.64
3-DEIS (Zhang & Chen, 2022)	10	4.17		ADM (Dhariwal & Nichol, 2021)	250	2.07	0.74	0.63
Diffusion + Distillation				EDM (Karras et al., 2022)	79	2.44	0.71	0.67
Knowledge Distillation* (Luhman & Luhman, 2021)	1	9.36		BigGAN-deep (Brock et al., 2019)	ĩ	4.06	0.79	0.48
DFNO* (Zheng et al., 2022)	1	4.12		CT	i	13.0	0.71	0.47
1-Rectified Flow (+distill)* (Liu et al., 2022)	1	6.18	9.08	CT	2	11.1	0.69	0.56
2-Rectified Flow (+distill)* (Liu et al., 2022)	1	4.85	9.01		~	11.1	0.07	0.50
3-Rectified Flow (+distill)* (Liu et al., 2022)	1	5.21	8.79	LSUN Bedroom 256 × 256				
PD (Salimans & Ho, 2022)	1	8.34	8.69	PD [†] (Salimans & Ho, 2022)	1	16.92	0.47	0.27
CD	1	3.55	9.48	PD [†] (Salimans & Ho, 2022)	2	8.47	0.56	0.39
PD (Salimans & Ho, 2022)	2	5.58	9.05	CD [†]	1	7.80	0.66	0.34
CD	2	2.93	9.75	CD^{\dagger}	2	5.22	0.68	0.39
Direct Generation				DDPM (Ho et al., 2020)	1000	4.89	0.60	0.45
BigGAN (Brock et al., 2019)	1	14.7	9.22	ADM (Dhariwal & Nichol, 2021)	1000	1.90	0.66	0.51
CR-GAN (Zhang et al., 2019)	î	14.6	8,40	EDM (Karras et al., 2022)	79	3.57	0.66	0.45
AutoGAN (Gong et al., 2019)	i	12.4	8.55	SS-GAN (Chen et al., 2019b)	1	13.3		
E2GAN (Tian et al., 2020)	1	11.3	8.51	PGGAN (Karras et al., 2018)	1	8.34		
ViTGAN (Lee et al., 2021)	1	6,66	9.30	PG-SWGAN (Wu et al., 2019)	1	8.0		
TransGAN (Jiang et al., 2021)	1	9.26	9.05	StyleGAN2 (Karras et al., 2020)	1	2.35	0.59	0.48
StyleGAN2-ADA (Karras et al., 2020)	1	2.92	9.83	СТ	1	16.0	0.60	0.17
StyleGAN-XL (Sauer et al., 2022)	1	1.85		СТ	2	7.85	0.68	0.33
Score SDE (Song et al., 2021)	2000	2.20	9.89	LSUN Cat 256 × 256				
DDPM (Ho et al., 2020)	1000	3.17	9.46	PD [†] (Salimans & Ho, 2022)	1	29.6	0.51	0.25
LSGM (Vahdat et al., 2021)	147	2.10						
PFGM (Xu et al., 2022)	110	2.35	9.68	PD [†] (Salimans & Ho, 2022)	2	15.5	0.59	0.36
EDM (Karras et al., 2022)	36	2.04	9.84	CD [†]	1	11.0	0.65	0.36
1-Rectified Flow (Liu et al., 2022)	1	378	1.13	CD†	2	8.84	0.66	0.40
Glow (Kingma & Dhariwal, 2018)	1	48.9	3.92	DDPM (Ho et al., 2020)	1000	17.1	0.53	0.48
Residual Flow (Chen et al., 2019a)	1	46.4		ADM (Dhariwal & Nichol, 2021)	1000	5.57	0.63	0.52
GLFlow (Xiao et al., 2019)	1	44.6		EDM (Karras et al., 2022)	79	6.69	0.70	0.43
DenseFlow (Grcić et al., 2021)	1	34.9		PGGAN (Karras et al., 2018)	1	37.5		
DC-VAE (Parmar et al., 2021)	1	17.9	8.20	StyleGAN2 (Karras et al., 2020)	1	7.25	0.58	0.43
ст	1	8.70	8.49	СТ	1	20.7	0.56	0.23
СТ	2	5.83	8.85	СТ	2	11.7	0.63	0.36

Figure 4: Sample quality on CIFAR-10 (left) ImageNet 64×64 , LSUN Bedroom 256×256 , Cat 256×256 (right) □▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶
 ▲□▶

Experiments

Figure 5: Sample generated by EDM (top), CT single-step (middle) CT 2-step (bottom)

- 3

・ロト ・ 同ト ・ ヨト ・ ヨト

Further Applications

1. Since consistency models define a one-to-one mapping between Gaussian noise and a data sample, one can interpolate between samples through latent space

Figure 6: Interpolating between images through latent space

Further Applications

2. As consistency models are trained to recover \mathbf{x}_{ϵ} from any noise input, they can perform denoising for various noise levels

Figure 7: Denoising various levels of noise from an image

Further Applications

 Also using multi-step generation procedure, consistency models can solve various inverse problems (e.g. colorization, super-resolution, stroke-guided image generation) in zero-shot as diffusion models

Figure 8: Colorization (top), super-resolution (middle), stroke-guided image generation (bottom)

Thank You

Q & A

< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪ < ■ ♪