
1/25

Consistency Models

2/25

Diffusion
▶ Forward: Diffuse x0 ∼ pdata(x) with a SDE

dx = f (x, t) dt+ g(t)dw

▶ Reverse: Denoise xT ∼ pT (x) with the reverse-time SDE

dx =
[
f(x, t)− g(t)2∇x log pt(x)

]
dt+ g(t)dw

Figure 1: Diffusion model

3/25

Motivation

Iterative sampling: progressively denoising a random noise vector

+ Small-sized model can unroll into a larger computational graph:

Score model sϕ (xt, t) is typically UNet, where time embedding
of t allows one model to deal with all the time step

– ×10 2000 sampling time compared to single-step generative
models (e.g. GANs, VAEs, normalizing flows)

Can we make a single-step generation without sacrificing the
advantage of iterative refinement?

4/25

Consistency Model (Overview)
▶ Use Probability Flow (PF) ODE instead of SDE to diffuse

▶ Learn model to have self-consistency: points on the same
trajectory are mapped to the same initial point

▶ Use the model to retrieve the ODE trajectory initialized by a
random noise vector

Figure 2: Consistency Model

5/25

Probability Flow ODE

Given a SDE
dxt = µ(xt, t)dt+ σ(t)dwt,

there exists a Probability Flow ODE, or a deterministic process

dxt =

[
µ(xt, t)−

1

2
σ(t)2∇ log pt(xt)

]
dt, (1)

whose trajectory have the same marginal probability density as that
of SDE.

6/25

Diffusion (PF ODE)

Sampling procedure of a diffusion model using PF ODE, with
µ(x, t) = 0, and σ(t) =

√
2t

1. Train a score model sϕ(x, t) ≃ ∇ log pt(x) via score matching

2. Plug in sϕ in Eq. (1) to obtain the empirical PF ODE

dxt

dt
= −tsϕ(xt, t) (2)

3. Sample x̂T ∼ π = N (0, T 2I) to initialize the ODE

4. Solve the ODE with any numerical ODE solver to obtain a
trajectory {xt}t∈[0,T]

5. Then x0 can be view as an approximate of a sample from
pdata(x)

* For numerical stability, one typically solve for xϵ instead of x0

7/25

Consistency Models

Definition
Given a solution trajectory {xt}t∈[ϵ,T] of a PF ODE in Eq. (1), the
consistency function is a function defined by

f : (xt, t) 7→ xϵ.

A consistency function is self-consistent: if its outputs are consistent
for any pairs (xt, t) on the same trajectory.

Figure 3: Consistency model and PF ODE trajectory

8/25

Consistency Models

Note for any consistency function f(·, ·), f(·, ϵ) is an identity
function. Hence to parameterize a consistency function, one must
satisfy such boundary condition.

Parameterization (Simple)

We can simply parameterize a consistency function by

fθ(x, t) =

{
x t = ϵ

Fθ(x, t) t ∈ (ϵ, T]
(3)

9/25

Consistency Models

Parameterization (Skip Connection)

We can also parameterize a consistency function with a skip
connection by

fθ(x, t) = cskip(t)x+ cout(t)Fθ(x, t), (4)

where cskip and cout are differentiable functions with cskip(ϵ) = 1,
and cout(ϵ) = 0.

(4) has some advantage over (3):

1. Differentiable at t = ϵ

2. Resemblance with strong diffusion architectures such as EDM.

10/25

Consistency Models

Training

1. Consistency Distillation (CD): Consistency model distills the
knowledge of a pre-trained diffusion model into a single-step
sampler

2. Consistency Training (CT): Consistency model is trained in
isolation, without dependence on pre-trained diffusion models

11/25

Consistency Distillation

Given a pre-trained score model sϕ(x, t),

1. Discretize the time horizon [ϵ, T] into N − 1 sub-intervals, with
boundaries

ϵ = t1 < t2 < · · · < tN = T.

2. Using a numerical solver, from xtn+1 we can get an accurate
approximate of xtn by

x̂ϕ
tn := xtn+1 + (tn − tn+1)Φ(xtn+1 , tn+1;ϕ), (5)

where Φ(x, t;ϕ) is the update function of a one-step ODE
solver applied to empirical PF ODE

* For sufficiently large N , such approximation is accurate

* For example, using Euler solver, we have

x̂ϕ
tn := xtn+1 − (tn − tn+1)tn+1sϕ(xtn+1 , tn+1)

12/25

Consistency Distillation

3. Sample x ∼ pdata, and randomly select tn

4. Sample xtn+1 from the transition density N (x, t2n+1I)

5. Compute x̂ϕ
tn using ODE solver according to Eq. (5)

6. Train the consistency model by minimizing its output
differences between xtn+1 and x̂ϕ

tn , using consistency
distillation loss defined as

LNCD(θ,θ−;ϕ) := E
[
λ(tn)d

(
fθ(xtn+1 , tn+1), fθ−(x̂ϕ

tn , tn)
)]

(6)

▶ Expectation is taken over x ∼ pdata, n ∼ U [1, N − 1], and
xtn+1 ∼ N (x, tn+1I)

▶ λ(·) : positive weighting function

▶ θ− : running average of past values of θ

▶ d(·, ·) : metric function (e.g. ℓ1ℓ2, LPIPS)

13/25

Consistency Distillation

Algorithm 1: Consistency Distillation (CD)

Input: dataset D, initial model parameter θ, learning rate η,
ODE solver Φ(·, ·;ϕ), d(·, ·), λ(·), and µ

θ− ← θ

while not converge do
Sample x ∼ D and n ∼ U [1, N − 1]
Sample xtn+1 ∼ N (x, t2n+1I)

x̂ϕ
tn ← xtn+1 + (tn − tn+1)Φ(xtn+1 , tn+1;ϕ)

L(θ,θ−;ϕ)← λ(tn)d
(
fθ(xtn+1 , tn+1), fθ−(x̂ϕ

tn , tn)
)

θ ← θ − η∇θL(θ,θ−;ϕ)
θ− ← stopgrad

(
µθ− + (1− µ)θ

)
end

14/25

Consistency Distillation

Theorem 1 (Informal)

Under some reasonable regularity conditions, if LNCD(θ,θ;ϕ) = 0,
we have

sup
n,x
∥fθ(x, tn)− f(x, tn;ϕ)∥2 = O((∆t)p).

15/25

Consistency Training

Need to estimate the score function ∇ log pt(xt) without a
pre-trained diffusion model. To do so, we use the following lemma:

Lemma 1
Let x ∼ pdata(x),xt ∼ N (xt;x, t

2I) which results as

pt(xt) = pdata(x)⊗N (0, t2I).

Then we have

∇ log pt(x) = −E
[
xt − x

t2

∣∣∣xt

]
(7)

16/25

Consistency Training

Proof.
From ∇ log pt(xt) = ∇xt log

∫
pdata(x)p(xt |x)dx,

∇ log pt(xt) =

∫
pdata(x)∇xtp(xt |x)dx∫
pdata(x)p(xt |x)dx

=

∫
pdata(x)p(xt |x)∇xt log p(xt |x)dx∫

pdata(x)p(xt |x)dx

=

∫
pdata(x)p(xt |x)∇xt log p(xt |x)dx

pt(xt)

=

∫
pdata(x)p(xt |x)

pt(xt)
∇xt log p(xt |x)dx

=

∫
p(x |xt)∇xt log p(xt |x)dx

= E [∇xt log p(xt |x) |xt]

= −E
[
xt − x

t2

∣∣∣xt

]

17/25

Consistency Training

Theorem 2 (Informal)

Under some reasonable regularity conditions, if we use Euler ODE
solver, we have

LNCD(θ,θ−;ϕ) = LNCT(θ,θ−) + o(∆t), (8)

where consistency training loss LNCT(θ,θ
−) is defined as

E [λ(tn)d(fθ(x+ tn+1z, tn+1), fθ−(x+ tnz, tn))] ,

with z ∼ N (0, I).

18/25

Consistency Training

Algorithm 2: Consistency Training (CT)

Input: dataset D, initial model parameter θ, learning rate η,
step scheduler N(·), EMA decay rate schedule µ(·), d(·, ·) and
λ(·)

θ− ← θ and k ← 0

while not converge do
Sample x ∼ D and n ∼ U [1, N(k)− 1]
Sample z ∼ N (0, I)
L(θ,θ−)← λ(tn)d(fθ(x+ tn+1z, tn+1), fθ−(x+ tnz, tn))
θ ← θ − η∇θL(θ,θ−)
θ− ← stopgrad

(
µ(k)θ− + (1− µ(k))θ

)
k ← k + 1

end

19/25

Consistency Models

Sampling (One-step)

Given a trained consistency model fθ(·, ·),
1. Sample x̂T ∼ N (0, T 2I)

2. Evaluate x̂ϵ = fθ(x̂T , T)

Sampling (Multi-step)

Algorithm 3: Multi-Step Consistency Sampling

Input: Consistency model fθ(·, ·), sequence of time points
τ1 > τ2 > · · · > τN−1, initial noise x̂T

x← fθ(x̂T , T)

for n = 1 to N − 1 do
Sample z ∼ N (0, I)
x̂τn ← x+

√
τ2n − ϵ2z

x← fθ (x̂τn , τn)
end

20/25

Experiments

Figure 4: Sample quality on CIFAR-10 (left) ImageNet 64× 64, LSUN
Bedroom 256× 256, Cat 256× 256 (right)

21/25

Experiments

Figure 5: Sample generated by EDM (top), CT single-step (middle) CT
2-step (bottom)

22/25

Further Applications

1. Since consistency models define a one-to-one mapping between
Gaussian noise and a data sample, one can interpolate between
samples through latent space

Figure 6: Interpolating between images through latent space

23/25

Further Applications

2. As consistency models are trained to recover xϵ from any noise
input, they can perform denoising for various noise levels

Figure 7: Denoising various levels of noise from an image

24/25

Further Applications

3. Also using multi-step generation procedure, consistency models
can solve various inverse problems (e.g. colorization,
super-resolution, stroke-guided image generation) in zero-shot
as diffusion models

Figure 8: Colorization (top), super-resolution (middle), stroke-guided
image generation (bottom)

25/25

Thank You

Q & A

