Traditional Classification Neural Networks are

Good Generators:
They are Competitive with DDPMs and GANs



Motivation

Compare to the generative models,
» neural network classifiers are easier to learn.

» neural network classifiers can better model the data’s
distribution.

Are they ready for image generation?



Neural Network Classifier

The objective of training a neural network classifier is as follows:

m}n Les (f(x),c)

» f: neural network
> x: input image
» c: class label for z

» Ls: classification loss (e.g. cross-entropy loss)

More generally, a neural network classifier can be a cross-model for
a text-to-image modeling task such as CLIP.



Overview of the Sampling Process

Starting from a random tensor xg, by exploiting the knowledge of
the classifier, generate an image x7.
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Figure 1: Sampling process

How do we exploit the knowledge of the classifier?



Initial Idea

Method (Directly optimize the input image)

Tpp1 = x¢ —argmin Lys (f (20 + Axy) , 0)
Azt
> {: time sequence of optimization

(1)
» xq: initial random tensor
> c: target class

Figure 2: Initial idea

However this objective is actually (almost) equivalent to the
targeted adversarial attack.
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Adversarial Attack

The objective of adversarial attack is to "mislead” the neural
networks by making “little” modification to an input.
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Figure 3: An example of adversarial attack



Adversarial Attack

> Untargeted Adversarial Attack: mislead the model to
provide any wrong answer, i.e.

max Lys (f (z%),¢), st d(z,2") < B,

where ¢ is the correct label of z.

> Targeted Adversarial Attack: mislead the model to provide
the targeted wrong answer, i.e.

min Les (f (2%),¢%), st d(z,2%) < B, (2)

where ¢* # c is a specific class assigned by the adversary.

Note equations (1) and (2) are equivalent (apart from the
constraint).



Limitation

Equation (1) optimize the high-dimensional input. Hence there
could be many semantic-agnostic solutions. To address this issue,
the authors propose mask-based stochastic reconstruction model to

make gradients semantic-aware.



Similar Limitation in Autoencoder

Q. Why is generative models (specifically, autoencoders) not as
effective as discriminative models (such as contrastive learning) in
pretraining foundation models for downstream tasks?

A. Autoencoder waste its capability to overfit semantic-agnostic
high-frequency details.



Masked Autoencoder

» Masking: Random sampling with high masking ratio
» Encoder: ViT, only applied to visible patches.

» Decoder: Light-weight compared to encoder. Takes (i)
encoded visible patches (ii) mask tokens.
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Figure 4. Masked autoencoder architecture



Masked Autoencoder

Figure 5: Reconstruction of MAE (80% masking ratio)



Masked Autoencoder

method pre-traindata  VIT-B ViT-L  ViT-H ViT-Hugg
scratch, our impl. 82.3 82.6 83.1

DINO [5] INIK 82.8 - - -
MoCo v3 [9] INIK 832 84.1 - -
BEIT [2] INIK+DALLE ~ 83.2 85.2 - -
MAE INTK 83.6 85.9 86.9 87.8

Figure 6: MAE vs self-supervised methods



Mask-Based Stochastic Reconstruction Module

objective (1) as

By adding a mask-based stochastic reconstruction module
(specifically a masked autoencoder) g, we can rewrite the initial

Tey1 = Tt — arﬁmin Las (f(g(xe + Axy)), )
Tt

(3)
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Figure 7: Adding masked-based stochastic reconstruction module
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Dilemma of Image Generation

Eimpirically,

Image resolution T = Diversity 1, Fidelity |

I

Image resolution | = Diversity |, Fidelity 1



Progressive-Resolution Generation Technique

Start by producing images of low resolution, and gradually increase
the resolution of the resulting images exponentially. For instance,
sequentially generate images of 64 x 64, 128 x 128,256 x 256 as
follows:
optimize upsample
x(6)4><64 mgzétxm x(1)28><128

optimize upsample optimize
(l)gf X128 1%56 X256 ngf %256



State-of-the-Art Image Synthesis

Resolutions Methods | FIDy | ISt
BigGAN-deep 2] 6.95
IDDPM [30] 12.26
SR3 [43] 11.30
DCTransformer [26] 36.51
VQ-VAE-2 [39] 31.11
ADM [9] w/o condition, w/ guidance 12.00 95.41
256 x 256 DeepDream [24] 134.69 22.60
Ours 6.88 1 | 326.33

Figure 8: Quantitative comparison on the ImageNet 256 x256



State-of-the-Art Image Synthesis
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Figure 9: Samples from ImageNet 256 x256



State-of-the-Art Image Synthesis

CaG has stronger semantic perception:

» CaG pays more attention to object diversity than background
diversity: birds occupy a large area of the picture

» CaG decouples and remove irrelevant object categories: include
only Tinca fishes that were not held by people

» Cag appears to be aware of geometric information



Text-to-Image Generation
Text-to-image foundation models as a generalized classifier:
» Extract embeddings for text via the text encoder
» Form the weight of the classifying layer with them

» Impose the classifying layer on the image encoder
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Figure 10: Text-to-image foundation models as a generalized classifier



Text-to-Image Generation

DALL E DALLE
“anarmehair in the shape of an avocado” “an illustration of a baby dakon radieh in a tutu walking a dog"

Figure 11: Text-to-image generation



